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Supplementary Methods for Chaplin-Kramer et al. Life Cycle Assessment Needs Predictive, Spatial 

Modelling for Biodiversity and Ecosystem Services 

 

In order to estimate the environmental impacts of different feedstocks and locations, and to ascertain the 

degree to which spatially explicit data and methods change the results, we conduct an LCA for high density 

polyethylene (HDPE) bioplastic using two alternative approaches. After defining the demand and therefore 

feedstock production scenarios (Section 1), we first conduct a standard attributional, ISO4040 compliant LCA 

(hereafter “standard LCA”; Section 2), calculating land-use change (transformation) impacts with the direct 

land-use change assessment tool developed by Blonk Consultants (Section 2.4.2). This represents historical 

changes in the land cover for the given crops (sugarcane and maize) and country of production (Brazil and 

USA) over the last 20 years. Second, we develop a “land-use-change-improved” (LUCI) approach to LCA 

(Section 3), in which we use the results of spatially-explicit modelling of land change and its impacts on 

biodiversity and ecosystem services to inform the agricultural stage of the standard LCA. To illustrate the 

impact of scale on sourcing decisions, we apply each approach to a range of demand scenarios for bioplastic 

and therefore crop production and the land-use changes to meet them. 

The LUCI-LCA is based on attributional inventories but considers forward-looking expansion and intensification 

on new land, based on predictive spatial modelling to meet demand for the new material (see Supplementary 

Note 1 for definitions of attributional compared to consequential LCA). We assume the new demand is 

additional to maintaining existing agricultural production levels for current uses. The modelling takes into 

account historical trends for both intensification of production on existing land and suitability of land for 

expansion in the area. Below, we discuss the various elements of our approach: 1) definition of demand 

scenarios, 2) elements of the standard LCA, 3) elements of LUCI-LCA approach, including predictive land 

change modelling, biodiversity and ecosystem service modeling, and 4) integration of LUCI into LCA, including 

adaption of existing life cycle inventory (LCI) used in the standard LCA. 

 

1. Agricultural crop demand scenarios 

In this use case, we apply conversion pathways from the literature (as given in Supplementary Figure 1) to 
determine how much raw material (sugarcane or maize) is required to meet the HDPE demand scenarios. The 
volumes of feedstock given in Supplementary Table 1 correspond to differing bio-HDPE demand scenarios. 
However, recognizing the importance of geographical influences on the results of such assessments, two 
different feedstocks in two locations are considered to demonstrate the new LUCI-LCA approach. Different 
scenarios are also informed by an understanding that impacts could differ with greater volume requirements 
due to the different spatial patterns of land-use change that result (Chaplin-Kramer et al.1). For this reason, 
the first two volume scenarios are set at the largest scales that could be induced directly by Unilever, with a 
subsequent scenario set to represent broader sectorial uptake of the bio-HDPE. 

Supplementary Table 1. Scenarios considered (metric tonnes of HDPE plastic, source of feedstock and relative 

feedstock volume) 

Market HDPE amount (T) Feedstock* amount (T) 

1. Unilever’s use of HDPE  North America 
(2012) 

23,000 
Maize USA 

134,140 
Sugarcane Brazil 

615,278 

2. Unilever’s total use of all plastics  in North 
America (2012) 

86,000 
Maize USA 

501,567 
Sugarcane Brazil 

2,300,603 

3. Extrapolated volume North America 321,000 
Maize USA 
1,872,130 

Sugarcane Brazil 
8,587,134 

* based on sugarcane fresh matter and dried maize grains  
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The scenarios considered include: 

1. Unilever’s approximate HDPE packaging volume used in North America in 2012 and assumed to be 
met either from maize grown in the USA or sugarcane from Brazil. 

2. Unilever’s approximate total plastic packaging volume (all plastics, i.e. PP+PET+HDPE) used in North 
America in 2012. This total volume was considered as HDPE in the case study to give a sense of the 
impacts that would emerge if they were sourced from bio-feedstocks; again they were assumed to be 
met either from maize grown in the USA or sugarcane from Brazil. 

3. An extrapolated volume included to scale the demand through the sector (calculated by taking the 
ratio of Unilever HDPE volume and Unilever plastic volume in North America and multiplying by the 
Unilever plastic volume in North America) met either from maize grown in the USA or sugarcane from 
Brazil. 

Supplementary Figure 1. Production flow diagram and conversion rates for sugarcane and maize, with references2, 3, 4 

 

2. Standard Life Cycle Assessment Methodological Details 

 
2.1.  System boundary 

The system boundary for the LCA is presented in Supplementary Figure 2. The analysis includes the production 
of agricultural raw material with all the associated inputs and emissions as well as land use change, ethanol 
production and dehydration, ethylene production and polymerization. All relevant transport steps are 
considered. Ethanol production is considered to occur at the same place as dehydration; ethylene production 
occurs at the same place as polymerization. As there are no differences in consumer use for HDPE derived 
from different feedstocks, the consumer use phase is excluded from the analysis. The end-of-life emissions 
are considered in a simplified manner: all the carbon in the bio-HDPE is assumed to be released at the end of 
the product life as carbon dioxide (CO2) with no contribution towards Global Warming Potential, since the CO2 
released was sequestered in crop growth. 

We highlight here that for the impact categories Biodiversity Damage Potential, Erosion Potential and Water 
Consumption, impact assessment is limited to the agricultural stage. This is because the land area occupied by 
other life cycle stages is relatively small, compared to the agricultural production stage, and land use and land 
use change is the main driver of these impact categories. Global Warming Potential and Eutrophication 
Potential are considered at each stage of the life cycle within the full system boundary.  

Agricultural production 

Ethanol production 

Ethanol dehydration 

Ethylene production 

Polymerization 

Sugarcane (fresh) = 15.0 & maize (grains dried) = 3.3 times content (Ref. 2) 

1 times at 100% concentration (Ref. 2)  

 

1.74 times at 100% concentration (Ref. 3) 

1.027 times at 100% concentration (Ref. 4) 
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Supplementary Figure 2. System boundary for the production of bio-HDPE (*transport of sugarcane-based HDPE from 
Brazil to USA). 

 

2.2.  Allocation 

Economic allocation is applied to allocate inputs and emissions to the main product and any co-products: 
distiller’s dried grains with solubles during maize ethanol production and electricity during sugarcane ethanol 
production, following the default approach in the ecoinvent database 2.2.  

2.3. Impact Assessment Methodology 

The following impact categories and methods are used: 

 Global warming potential (GWP) - IPCC AR55 100 years excluding biogenic carbon method. The GWP 

associated with land use change (LUC) is considered as given in section 2.4.2 

 Marine eutrophication potential – ReCiPe (Goedkoop et al.6) 

 Biodiversity damage potential –Mean Species Abundance (MSA; GLOBIO7), according to de Baan et 

al.8 The MSA observations of selected pressure factors for ‘Conventional farming’ and ‘Perennial tree 

crop’ are chosen for the land use and land use change areas for annual cropland and perennial 

cropland respectively in the assessment of biodiversity damage potential. For land use change from 

forest, an MSA factor of 1 is used. 

 Erosion regulation potential (ERP) – Saad et al.9 

 Consumed water - No impact assessment performed for main results, the indicator used is water 

consumption (Mekonnen et al.10); impact assessment performed with AWARE method in sensitivity 

analysis (see Section 3.3.3)  

 
 
 

Agricultural production 

Ethanol production 

Ethanol dehydration 

Ethylene production 

Polymerization 

Distribution & Use (excluded) 

End of life 

*Transport (ship) 

Transport (truck)  

Transport (truck)  



4 
 

2.4.  Life Cycle Inventory 
 

2.4.1. Agricultural production 
The inputs and emissions for the production of sugarcane in Brazil and maize in the USA are obtained from 
the ecoinvent 2.2 datasets ‘BR: sugar cane, at farm’ and ‘US: corn, at farm’ (Ref. 2) respectively and the 
inventories are revised to take into account updated crop irrigation figures (Supplementary Table 2). The 
volume of consumed (or blue) water for irrigation is derived from the Water Footprint Network (WFN) 
database (Ref. 10). Irrigation efficiency factors are taken from Rohwer et al.11 The ecoinvent 2.2 dataset ‘US: 
irrigating’12 is used to model the irrigation of sugarcane, but the US electricity mix is replaced with a Brazilian 
one. In the maize system, we also replace the inventory ‘CH: irrigating’ with the ‘US: irrigating’. These values 
for irrigation correspond to other sources (see 3.2.3.3.1 and 3.2.3.3.2). 

Supplementary Table 2. Updated volumes of irrigation water based on WFN (Ref. 10) and Rohwer et al. (Ref. 11) 

Crop Consumed volume of water for 
irrigation per T crop [m3T-1] (WFN) 

Irrigation 
efficiency (Ref. 11) 

Irrigation blue water volume 
consumption per T crop [m3T-1] 

 

Sugarcane in Mato Grosso, Brazil 0.32 0.55 0.58  

Maize in Iowa, USA 1.65 0.55 3.01  

 
2.4.2. Land-Use Change (LUC) 

The amount of land use change (transformation) and carbon dioxide emissions resulting from land 
transformation are estimated using the direct land use change assessment tool (Blonk Consultants 2014)13, 
following the standards PAS2050-114, Greenhouse Gas (GHG) Protocol15 and EnviFood Protocol16 – “country 
known, previous land use unknown” situation 

The area of land transformation used in the assessment of Erosion Potential and Biodiversity Damage Potential 
are given below (Supplementary Table 3) and the GHG emissions from land transformation for sugarcane and 
maize are 10.81 T CO2eq/ha*year and 0.02 T CO2eq/ha*year respectively. The figures for both the area of land 
transformation and GHG emissions from land transformation are derived in the tool as annual figures).  

Supplementary Table 3. Land transformation amortized over 20 years derived from the Direct Land Use Change 
Assessment Tool (Ref. 13), weighted average approach (Version 2014.1, published January 2014) 

Land transformation type 
Sugar cane in Brazil Maize in the United States 

m2 ha-1 m2 ha-1 

From Forest (average) to Annual cropland 188 0 
From Grassland (average) to Annual cropland 0 0 
From Perennial cropland to Annual cropland 13 1 
From Annual cropland to Annual cropland 70 75 
No transformation attributed 9730 9924 

 
2.4.3. Ethanol Production 

The resource use and emissions for the production of ethanol are obtained from the ecoinvent 2.2 datasets 
‘BR: ethanol, 95% in H2O, from sugar cane, at fermentation plant’ and ‘US: ethanol, 95% in H2O, from corn, at 
distillery’ respectively. These are representative of ethanol production in Brazil and the United States (Ref. 2).  

2.4.4. Ethanol Dehydration 

The dehydration of hydrated ethanol 95% to anhydrous ethanol is considered using the datasets ‘BR: ethanol, 
99.7% in H2O, from biomass, at distillation’ and ‘US: ethanol, 99.7% in H2O, from biomass, at distillation’. The 
Brazilian ethanol dataset considers the production from both sugarcane and molasses (by-product from sugar 
production). For the purposes of this study, we assume that 100% of new ethanol is produced from new 
sugarcane. We adjust the ecoinvent dataset to consider 100% production from sugarcane. 
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2.4.5. Ethylene Production  

The LCI for the production of ethylene from ethanol is based on the processing requirements given in Kochar 
et al. (Ref. 3)  shown in Supplementary Table 4. The steam is modelled using the dataset ‘RER: steam, for 
chemical processes, at plant’17, power is modelled using the ecoinvent country specific electricity mix ‘BR: 
electricity, high voltage, production BR, at grid’18 and ‘US: electricity, medium voltage, at grid’ for Brazil and 
USA respectively, and fuel is assumed to be gas and modelled using the ecoinvent dataset ‘RER: natural gas, 
burned in industrial furnace >100kW’19.  

Supplementary Table 4. Inputs required for the production of polymer grade ethylene (Ref. 3) 

 Amount Unit 

Ethanol (100% 
concentration) 

1.74 t t-1 ethylene 

Steam, from natural gas 1.21 t t-1 ethylene 
Electricity 1.12 GJ t-1 ethylene 
Fuel (net) 1.68 GJ t-1 ethylene 

 
2.4.6. Polymerization 

The polymerization of ethylene to HDPE is modeled following the approach of Tsiropoulos et al. (Ref. 4). 
Monomer consumption in kilograms per metric tonne of product is 1027 kg/T (according to the European 
Commission20).  

2.4.7. Transport 

Transportation is modeled for relevant life cycle phases where it is not already included in the existing 
datasets. Transport includes the trucking of product from the ethanol production plant to the ethylene 
production plant (500 km by road for both regions) and the shipping of HDPE produced from sugarcane in 
Brazil to the US market (10,100 km according to Sea-Distances.org21). Transport is modelled using ecoinvent 
datasets ‘RER: transport, lorry >16t, fleet average’ and ‘OCE: transport, transoceanic freight ship’.22  

2.4.8. End-of-Life 

All the carbon stored in the bio-HDPE is assumed to be released back to the atmosphere at the end of the 
product life in the form of carbon dioxide (CO2) with no contribution towards global warming potential, since 
the CO2 released was sequestered in crop growth.  

2.5. Sensitivity analysis 

A sensitivity analysis is provided for scenario 3 (321,000 T HDPE). The effects of pumping water for irrigation 
are varied using lower and upper irrigation water volumes based on the lower and upper consumed water 
volumes (Supplementary Table 5) considering irrigation efficiencies (as given in Supplementary Table 2). 
Similarly, the N-fertilizer application rates and yields are varied using the lower and upper N-fertilizer 
application rates (as given in Supplementary Table 6). These changes affected estimates for Global Warming 
Potential and Eutrophication Potential. For Biodiversity Damage Potential and Erosion Potential, the yield 
changes associated with the upper and lower N-fertilizer application rates are applied and for the 
Biodiversity Damage Potential combined with the lower and upper MSA (Mean Species Abundance) values 
from GLOBIO (Supplementary Table 7). For Water Consumption, the yield changes associated with the upper 
and lower N-fertilizer application rates are applied and combined with the lower and upper consumed water 
values as estimated using the LUCI-LCA values; the relative differences in consumed water from the base 
case in the LUCI-LCA were applied to the LCA base case. 
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Supplementary Table 5. Consumed water (m3/T crop) for sugarcane (Mato Grosso) and maize (Iowa)   

 Base case Lower Upper 

Sugarcane (LCA) 0.32 0.08 0.40 

Maize (LCA) 1.65 0.31 2.79 

 

Supplementary Table 6. Changes in nitrogen application rates (%) and crop yields considered in sensitivity analysis 

used in LCA 

 Change in nitrogen application rate Change in yield 

 Lower Upper Lower Upper 

Sugarcane  -45% +45% +9% -9% 

Maize  -15% +15% +9% -9% 

 

Supplementary Table 7. Sensitivity analysis for Biodiversity Damage Potential (GLOBIO)  

 Base case Lower Upper 

Conventional farming 0.84 0.75 0.93 

Perennial tree crop 0.78 0.64 0.92 

 
 

3. Land Use Change Improved (LUCI) Life Cycle Assessment Methodological Details 

To produce the LUCI-LCA, we first develop predictive land change models (LCM) to translate the demand 
scenarios into maps of agricultural expansion and intensification (section 3.1).  We feed the resulting land-use 
change maps into models for biodiversity and ecosystem services (InVEST) in order to assess the 
environmental impacts of the additional product demand in a spatially explicit way (section 3.2). Finally, we 
integrate the results to substitute for key elements of the land-use change impacts in standard LCA, as 
illustrated in Fig. 1 in the main text (and described in detail in section 3.3).  

3.1.  Land Use Change Modeling to Spatialize Demand Scenarios 

This section summarizes the process for generating spatial scenarios of agricultural expansion and 
intensification resulting from changes in commodity demand in a region. This approach can be applied with 
public, globally available data and limited land change modeling expertise. The approach we developed has 
three steps, described in detail below: 

1. Derive the potential land area for expansion required to achieve the increase in production based on 
expansion only 

2. Adjust the total land expansion to account for intensification by creating spatially explicit yield map to 
partition production into amounts met through expansion and intensification  

3. Allocate the expansion area spatially within the region of interest 
 

3.1.1. Derive the area of expansion 

The potential expansion area is derived through an extrapolation of past trends in production and the 
harvested crop area. In order to allow for a globally replicable approach that can be used across supply chains, 
we prioritized globally-available data to maintain consistency between study regions. We use national FAO 
data23 to relate production and area of a particular crop over a time series, regressing production in each year 
against harvest area in each year. The slope of this line provides a more appropriate estimate of agricultural 
expansion to meet a production target than yields alone because it incorporates past gains through both 
intensification and expansion. If past production from one year to the next has increased more than can be 
accounted for by multiplying past increases in harvested area by yield in the first year, then the remaining 
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production must be attributable to intensification. If yields are used instead of this time series relationship 
(i.e., dividing production target by current yields), the total area predicted for expansion could be higher than 
is likely to occur in reality because no intensification would be assumed. Since the slope of the regression we 
are using is the expected increase in production for an expected increase in area, the production target is 
simply divided by the regression slope in order to solve for the area of expansion needed. We are assuming 
the rate of intensification will continue on its previous trajectory. 

To illustrate this in the context of our use case, the solid line in Supplementary Figure 3 represents the 

regression; the production increase per area increase based on past trends, which reflects a mixture of 

intensification and expansion. The dotted line represents the expansion required if there is no intensification, 

if current yields are applied to reach production target (i.e., the slope of the dotted line is the most recent 

yield or average yield from the past several years if highly fluctuating).  

 

Supplementary Figure 3. Case study example of regression to derive area of expansion from past trends on 
production and harvested area. 

In this case study, Mato Grosso shows evidence of intensification based on past trends, whereas Iowa does 
not. That is, changes in production in recent years can be attributed solely to changes in harvested area in 
Iowa. In Brazil we find the slope of the regression between production and area to be 81.9 (y = 81.993x – 
5E07); thus for every 82 metric tonnes of sugarcane production, 1 hectare of land was converted to sugarcane 
production in Brazil. In order to calculate the expansion area predicted by past trends for each demand 
scenario, then, the production target is divided by the slope of this regression (Supplementary Table 8).  

Supplementary Table 8. Production targets and area of expansion predicted for each demand scenario 

 

y = 81.993x - 5E+07
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needed

If no intensification 
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New Demand

Study 
area 

Scenario Crop 
HDPE 

demand (T) 
Conversion Factor 

Crop 
production 
target (T): 

Area of 
expansion 

predicted (ha): 

MT 1 Sugarcane 23,000 
 

615,278 7,504 
MT 2 Sugarcane 86,000 26.75 2,300,603 28,059 
MT 3 Sugarcane 321,000 

 
8,587,134 104,730 

IA 1 Maize 23,000  134,140 12,008 
IA 2 Maize 86,000 5.83 501,567 44,898 
IA 3 Maize 321,000 1,872,130 167,584 
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3.1.2. Partition production into expansion and intensification 

To derive the amount of crop produced through expansion, average yields for the most recent year (Ref. 23) 
are multiplied by the expanded area (determined in 3.1.1). This value is then subtracted from the demand 
target to derive the amount of commodity produced through intensification (Supplementary Table 9). If, in 
the last 10 years of production, increases can be attributed solely to an increase in harvested area (as was the 
case for Iowa; meaning the slope of the line determined in 3.1.1, was the same as the current yield, 11.1 T/ha), 
the amount of production achieved through expansion should be equal to the demand target.  

For simplicity, the yield increase for intensification is specified as exactly that required for all of the target 
production to occur on the land predicted for agricultural expansion. The area of intensification is therefore 
equal to the area of expansion, and the intensified yield is calculated as the slope of the line presented in 3.1.1. 
In the case of Brazil, this requires a yield of 82 T/ha for all scenarios (up from a current average yield of 75.3 
T/ha). Thus, according to this estimate, the amount of increased production met through intensification is less 
than 10% of the total increase. The effects of intensification are assumed to apply to all of the sugarcane 
expansion area. This is not necessarily a realistic prediction (i.e., yields could be expected to rise both in current 
and future sugarcane production areas, not exclusively in, and evenly across, all future sugarcane production). 
However, it is not possible with currently globally available data to spatially attribute past intensification, 
because maps of fertilizer use and crop-specific land-uses are not available at the resolution necessary for our 
ecosystem services modeling (500 m or less).    

Supplementary Table 9. Production and area predictions for expansion and intensification of sugarcane in Mato 
Grosso, Brazil (with an intensified yield of 82 T/ha up from 75.3 T/ha average current yield; still well within the 
achievable yields for this climate24), and expansion of maize in Iowa, USA (with average current yield of 11.1 T/ha).  
 

3.1.3. Spatially allocate the expansion area 

Our approach for spatially allocating the agricultural expansion required to meet the production target 
involves creating a suitability layer that assigns eligible pixels an index value which reflects biophysical 
suitability for conversion to agriculture. Specifically, the approach relies on estimating suitability using a 
logistic regression where the 0/1 dependent variable indicates whether a pixel is classified as agriculture in a 
particular year. After regressing the dependent variable against multiple driver variables on a subset of the 
data, the suitability layer is generated by interpreting predicted probabilities from the logistic regression as a 
suitability value for each pixel capable of conversion to agriculture. These values are then sorted, with the 
pixels that have the highest ranking values chosen for conversion to agriculture until the area requirements of 
the demand scenario have been met.25   

This approach makes the fundamental assumption that factors that have historically determined the location 
of agriculture will also determine the location of agricultural expansion driven by increases in demand for the 
commodities specified in the demand scenario (i.e. in our case, maize and sugarcane). Part of this assumption 
is related to the static nature of the regression: that is, we predict where agriculture exists at a point in time. 
The other part of this assumption is due to coarseness in the representation of agriculture: we are unable to 
identify datasets with global coverage that resolve agriculture at more refined classifications (i.e. crop species 

Region,       
Scenario 

Production 
target (T): 

Area of 
expansion (ha):  

 Expansion 
production (T) 

Intensification 
production (T) 

MT 1 615,278 7,504  575,438                                    39,840 
MT 2 2,300,603 28,059  2,143,381                                   157,222 
MT 3 8,587,134 104,730  7,996,665                                   590,469 
IA 1 134,140 12,008  135,263 - 
IA 2 501,567 44,898  501,567 - 
IA 3 1,872,130 167,584  1,872,130 - 
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or categories of crop).  Therefore, we are unable to account for the fact that expansion of certain crops may 
be driven by different variables than those that drive “agriculture” generally. The benefit of taking this general 
agriculture perspective is that we are representing total land-use change, which includes not only the direct 
land-use change that results from a particular crop replacing natural habitat, but also a proxy for indirect land-
use change that results from one crop displacing another crop that ultimately causes conversion of natural 
habitat (indirect land-use change). That is, it will likely be the case that meeting a demand scenario will not 
cause conversion of natural habitat to farming of the desired feedstock at the areas specified in the demand 
scenarios, since crop-to-crop conversion on farmland may occur. But this crop-to-crop conversion may cause 
other commodities to drive expansion into natural lands. We believe this makes the LUCI-LCA approach a more 
conservative (in the sense of assessing worst-case impacts) way to consider the full change that will likely be 
provoked within the regions of study, whether directly or indirectly. 

We do not account for leakage effects outside the geographic boundaries of the study system (in this case, 
the states of Mato Grosso or Iowa); instead we assume that all commodity demand and associated agricultural 
expansion will occur within the study regions. This is because the effects of crop displacement are more 
profound on the local level. It is more likely that the shift from cattle ranching to sugar cane cultivation will 
lead to deforestation for cattle ranching within the same country and region. The direct link between the shift 
in types of cultivation in one part of the globe and land use changes in the other parts of the globe is difficult 
to demonstrate.  

3.1.3.1. The Logistic Regression Framework  

Land cover (MODIS26) data from a reference year (in this case, 2007) are reclassified according to binary 
variables indicating whether each pixel is classified as agriculture.  Areas that are assumed to be unable to 
convert to agriculture (urban, barren, water) are omitted from the regression. Given a set of K driver variables 
(discussed below), a regression (with slope coefficients 𝛽 for each driver variable) is then run with the 
following form: 

𝜋(𝑎𝑔 = 1) ~ 𝛽1𝑥1 +  𝛽2𝑥2+ . . . + 𝛽𝐾𝑥𝐾 

Where 𝜋 is the logistic transform that translates the probability (𝑝) of the outcome variable taking on a value 
of unity to a variable suitable for linear regression:27  

𝜋 = log 
𝑝(𝑥)

1 − 𝑝(𝑥)
 

The driver variables xk can be transformed based on theory or empirical knowledge – for example, topography 
may be an important predictor of suitability for agriculture, but variations in a relatively shallow slope may be 
unimportant. In this case, we found this to be true, and created a new variable that creates a binary indicator 
for “shallow” and “steep,” based on whether slope is below or above a specific value (see 3.1.3.2). 

Logistic regressions are estimated using maximum likelihood estimators, which identify the combination of 
parameter values that are most likely to produce the observed data. When working with relatively large 
rasters, the potential for spatial autocorrelation can typically be addressed by fitting the regressions to 
relatively sparse sample of the rasters (between 1% and 10% in different model runs). This was the approach 
used for generating the scenarios used for our analysis. Logistic regression can be implemented in most 
common statistical packages; we used the R package “lulcc” which provides a workflow to connect raster data 
to the glm function for generalized linear models.   

3.1.3.2. Data Sources and Selection of Driver Variables 

A key component of this approach is to develop a process that can function with only global data.  

Supplementary Table 10 provides an overview of globally available data relevant for modeling agricultural 
expansion. Additional global data layers of potential relevance could be included (e.g., the Global Roads Open 
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Access Data Set28), but our initial small set is sufficient to represent the types of ecosystem impacts that 
occurred from historic agricultural expansion (see Fig. 3, main manuscript). 

 
Supplementary Table 10. Data sources considered for land change model 

For land cover data, MODIS years 2001, 2007 and 2012 are used as the primary years for exploratory analysis 
and model testing,30 with the model ultimately generated using 2007 data to allow validation against datasets 
from later years (see Section 3.1.3.3). Land cover data specifying agriculture are always required to generate 
the dependent variable layer, but may also be used to derive alternative driver variables such as distance from 
the current agricultural frontier or from urban centers. All data are resampled to the 500 meter resolution of 
the MODIS land cover, using bilinear resampling for continuous data, and nearest neighbor for categorical.   

The slope variable was transformed (after resampling) to a binary variable indicating slope as greater than five 

percent (though testing reveals results are insignificant to thresholding between four and twelve percent). All 

other variables described in Supplementary Table 11 are untransformed when tested for inclusion in the linear 

logistic regression. Applying screening tests for correlation using Kramer’s V statistic, as well as subsequent 

inspection of logistic regression results, the final functional forms of the regression (with intercept 𝛽0 and 

slope coefficients 𝛽𝑥) used for the two states are: 

IA:  𝜋(𝑎𝑔 = 1) =  𝛽0 +  𝛽1𝑝𝐻 + + 𝛽2𝑆ℎ𝑎𝑙𝑙𝑜𝑤𝑆𝑙𝑜𝑝𝑒 +  𝛽3𝑆𝑖𝑙𝑡𝑃𝑐𝑡 

MT:  𝜋(𝑎𝑔 = 1) =  𝛽0 +  𝛽1𝑝𝐻 +  𝛽2𝑆ℎ𝑎𝑙𝑙𝑜𝑤𝑆𝑙𝑜𝑝𝑒 + + 𝛽3𝐶𝑙𝑎𝑦𝑃𝑐𝑡 + 𝛽24𝑆𝑜𝑖𝑙𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝐶𝑎𝑟𝑏𝑜𝑛 

The specific values of the model fit are listed in Supplementary Table 11. 

Supplementary Table 11. Coefficients of predictor variables in land change model for the study regions. 

Coefficient IA MT 

Intercept -33.4219 -25.2763 

pH 0.2557 0.2489 

Shallow Slope 0.5704 2.2446 

SiltPct 0.4330  

ClayPct  0.2621 

Soil Organic Carbon  -0.2787 

 
 
 

Driver Variable Resolution Source Full Name Description 

Bulk Density    
 
International Soil 
Reference 
Information Center 

 
 
Group that aggregates soil data 
from multiple sources into a 
single 1km resolution product. 

Cation Exchange Capacity   
pH   

Soil Organic Carbon 1km ISRIC 

Sand Percent   
Silt Percent   

Clay Percent   

 
Slope 

 
90m 

 
SRTM 

Shuttle Radar 
Topography  
Mission 

NASA mission to collect global 
elevation data, now available at 
30m resolution globally. 

Annual Land Cover   
2001-2012 

500m MCD12Q1 MODIS Land  
Cover Data 

One of the land cover products 
from the MODIS missions. 

Mean Annual Precip 
Mean Annual Temp 

1km 
 

WorldClim29 
 

World Climate 
Data 

Global climate data for ecological 
modeling 
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3.1.3.3. Model Performance 

In the context of our application and data limitations, there is not a single test and metric that provides a good 
summary of model predictive performance. A first consideration is how well the model predicts the transitions 
from different types of habitat into agriculture. We considered this by comparing the actual land use change 
that occurred between 2007 and 2012 in both regions (Iowa for maize and sugarcane from Mato Grosso) with 
the output from the logistic land change model. This was accomplished by isolating the agricultural expansion 
land use change only (pixels that switched from non-agricultural non-urban to agricultural) for MODIS 2007 
and MODIS 2012 land cover data. Supplementary Figure 4 summarizes the transitions resulting from this land-
use change model, classified by habitat type. Very different patterns emerge in the two regions, with maize 
expansion in Iowa predicted to occur predominantly on forested land, and secondarily on grassland, while 
sugarcane expansion is predicted to occur almost exclusively on savanna in Mato Grosso. Interestingly, the 
logistic LCM is more accurate at predicting the proportion of change in different habitats, the larger the change 
considered. That is, there is a closer match to actual historical changes, in terms of the relative proportions of 
each type of habitat converted, for scenario 3 with a volume of 321,000 T HDPE than scenario 1 with a volume 
of 23,000 t.  In both regions and for all scenarios, the proportion of each habitat predicted to be converted to 
agriculture by the logistic LCM matches actual change (red bars in Supplementary Figure 4) much better than 
the changes assigned in the standard LCA (grey bars). In standard LCA, all habitats for the additional maize and 
sugarcane production required to reach the demand targets is based on national-level estimates from the 
previous 20 years (according to the Direct Land Change Assessment tool),13 which only tracks annual and 
perennial cropland, grassland, and forest. As previously noted, it assumes much of the land for both crops will 
come from existing cropland, and in fact nearly all of the “conversion” in Iowa is counted as coming from other 
crops (which is why no yellow bars appear in the Iowa plot for Supplementary Figure 4).  

 

For comparison, we also ran the InVEST Scenario Generator: Proximity Based model for the total hectares of 
expansion predicted for Scenario 3 (320,000 T HDPE), to generate maps of agriculture expanding out from 
current cropland. This essentially counts the pixels closest to current agriculture as most “suitable”. The 
proximity-based agricultural expansion often matches the actual compositional changes more closely than the 
logistic model for Mato Grosso, but not for Iowa (light blue bars in Supplementary Figure 4). However, in both 
regions the proximity to agriculture land change model yields results that more closely align to actual change 
than those achieved using the Direct Land Use Change Assessment Tool for standard LCA (Ref. 13). The trend 
depicted in the actual change calculated through MODIS matches that of available agricultural census data 
(Supplementary Note 2).  

Because spatial configuration and not only compositional changes matter to the provision of ecosystem 
services, we also consider what percent of new agricultural conversion the model correctly predicts between 
2007 and 2012.  The logistic regression (first row in Supplementary Table 12) correctly predicts conversion to 

Supplementary Figure 4. Comparison of the habitat types converted for each scenario in the different methods of LCA 

and in actual agricultural expansion that occurred between 2007-2012 in Iowa and Mato Grosso. Proximity-based LCM 

and standard LCA LUC shown for scenario 3. Actual agricultural expansion shown for an area equivalent to scenario 3. 
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agriculture (i.e. changes in land cover pixels from 2007 to 2012) on a majority of the landscape in Iowa, though 
only about one quarter of new agriculture in Mato Grosso is correctly predicted. The proximity-based model 
performs as well in Iowa and slightly better in Mato Grosso (35% correct in pixel-specific changes). However, 
despite this similar performance, the agreement between new agricultural pixels for the two models is low 
(55% in Iowa and 31% in Mato Grosso). Thus, the pixels that are identified correctly by each model are different 
pixels, for the most part. 

Supplementary Table 12 - Model performance 

 Iowa Mato Grosso 

Logistic regression model 59% 27% 

Proximity-based model 59% 35% 

Despite this error in individual pixel-level conversion, the greater question to environmental impact 
assessment is whether the land use change model captures the types of land-use change trends that are 
important to ecosystem services. We therefore assess the difference between impacts on ecosystem services 
modeled from past agricultural expansion and LCM-generated agricultural expansion, and in this case find the 
magnitude of impacts to be relatively robust to pixel-level errors in land-change model prediction (see Figure 
3, main manuscript).  

To create a validation layer for the ecosystem service impacts predicted by the LCM model, we generate a 
binary map of where conversion to agriculture occurred between 2007 and 2012, and then overlay these pixels 
as new agriculture onto the 2007 landscape. The only impact for which we are unable to assess LCM 
uncertainty in this way is Water Consumption. Impacts resulting from past land-use change cannot be 
modelled because change in irrigation resulting from land-use change during this period is unknown. For the 
remaining impacts, predictions that show complete alignment with this map represent total land change 
model accuracy (assuming no error in the MODIS classifications). In this case our validation is only concerned 
with conversion from vegetated land to agriculture, and not any other categorical transitions. We then use 
the absolute amount of conversion between 2007 and 2012 as a new “demand scenario” to feed into the LUCI-
LCA and calculate the impact per T of HDPE. This normalized impact can then be compared to the logistic 
regression model, as well as the proximity-based scenario generator (abbreviated as “SG:PB” for “Scenario 
Generator: Proximity Based”). SG:PB essentially creates a suitability layer as well, except this layer is derived 
purely based on distance to or from the frontier of certain land cover classes (in this case, agriculture). When 
running SG:PB, we also apply the same restrictions for the types of land that can be converted – specifically, 
omitting barren, urban, and water.  

 
3.2.  Modeling Biodiversity & Ecosystem Services Impacts from Agricultural Expansion and Intensification 

Here we describe the methods, data, assumptions, and results from the ecosystem services modeling to assess 
impacts from the increased production to meet the different scenario demand targets. The spatially-explicit 
effects of agricultural expansion are modeled in Iowa and Mato Grosso, for carbon loss (InVEST Carbon Storage 
and Sequestration and Forest Carbon Edge Effects models), nitrogen export (InVEST Nutrient Delivery Ratio 
model), water consumption from irrigation (InVEST beta model for blue water consumption), sediment export 
(InVEST Sediment Delivery Ratio model), and biodiversity (MSA) reduction (InVEST GLOBIO model).   

However, when it comes to modeling the impacts of intensification, our approach is only partial. We believe 
the science and data are not adequate to model the impacts of intensification to biodiversity, sediment export 
or carbon loss / sequestration, for two reasons: first, there are currently no globally available maps of crop-
specific composition at the resolution needed for the InVEST models. It is therefore not possible to make 
predictions of the spatial effects of intensification of existing crops. Second, even if such data were available, 
we do not yet have a mechanistic model or even consistent scientific evidence linking yields to specific changes 
in tilling and soil management that may also affect erosion and carbon sequestration, or between yields and 
hospitability to biodiversity. We thus limit our analysis of impacts of intensification to nitrogen export and 
water consumption, via models predicting the relationship between yields, nutrient application, and irrigation. 
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In the following sections, we describe the individual InVEST models used to estimate ecosystem impacts to 
substitute key elements (inventory data and characterization factors) in the agricultural stage of standard LCA.  
The ecosystem impacts from the land use change scenarios, modeled using InVEST or simple GIS approaches, 
align to the LCA impact categories as follows: 

1.  Carbon Loss (input to Global Warming Potential) 
2.  Nutrient Export (input to Eutrophication Potential) 
3.  Water Consumption from Irrigation (input to Water Consumption and Global Warming Potential - 
energy used for pumping in irrigation) 
4.  Sediment Export (input to Erosion Potential) 
5.  MSA Reduction (input to Biodiversity Damage Potential) 

3.2.1. Carbon Loss   
3.2.1.1. Overview 

We use the InVEST (v 3.2) carbon edge effects model to estimate loss of carbon storage for each scenario. The 
carbon edge effects model is an extension of the InVEST carbon model, which incorporates our recent work 
documenting the effects of fragmentation on carbon storage in tropical forest edges.31 The model follows the 
typical inventory approach32 for all habitat types other than tropical forest. 

3.2.1.2. Inputs and Assumptions 

The full description of the InVEST carbon edge model can be found in the InVEST User’s Guide online.33 For 
forest carbon edge, we included only estimates for below-ground, because above-ground carbon was 
predicted by the model based on a pixel’s distance from forest edge. For consistency with the standard LCA 
approach (Ref. 13), wherever possible we use global estimates for carbon in different vegetation classes from 
IPCC (Ref. 32) and FAO Global Forest Resource Assessment34 defined in the land use-land cover map we are 
using (MODIS, IGBP classification). Where coverage of certain classes is missing in those sources (e.g. savanna, 
shrubland), we use the dataset developed by Ruesch and Gibbs35. We summarize the input data sources and 
assumptions in Supplementary Table 13.  

The effect of intensification practices, specifically normal and low tillage, on soil carbon storage are not well 
understood and this remains an open area of research. The majority of studies on this topic have only 
measured soil carbon within the first 20-30 cm, and meta-analyses36,37 have shown that when lower depths of 
the soil profile are included, the effect of tilling is negligible. Furthermore, we have no quantitative relationship 
between tilling and yields; including the effects of management would only have been useful in terms of 
providing an upper and lower bound for the impacts on carbon storage. Therefore, we do not include the 
impacts of mechanization or intensification in our assessment of the effects of land use change on carbon 
storage. We do not report results for soil carbon here, because this parameter is already considered within 
the LCA and does not require substitution since we do not expect effects to be spatially explicit. Biophysical 
tables used in the model are reported in Supplementary Note 3. 

Supplementary Table 13. Input data for the InVEST carbon model 

Input Source Main assumptions 

LULC Land use land cover map 
Source: MODIS, w/ logistic LCM 

Cf. Section 3.1.2 
Uncertainty tested by running alternative scenarios 

Carbon edge effects 
parameter table 

InVEST carbon model See Ref. 31 

Biophysical table Ref. 35 Cross-walking GLC land cover to MODIS IGBP 

classification. See Supplementary Note 3 

 
3.2.1.3. Model Sensitivity 

We test parameter sensitivity for scenario 3 in the predominant land covers into which agriculture expanded 
in our land-change model for each region. In Mato Grosso, the predominant land cover transformed is woody 
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savanna (<80% of converted habitat for scenario 3; Supplementary Figure 4); in Iowa, it is forest (60%) and 
grassland (20%). 

For Mato Grosso, the globally-available estimate for carbon stored in woody savanna is 53 T/ha (Table S1f in 
Ref. 35).  We took upper and lower bound estimates from the literature for the Mato Grosso region, with 
carbon values ranging from 21.1. T/ha38 to 71.9 T/ha.39  

For Iowa, the carbon estimated in forest was 93 T/ha and in grassland it is 6.4 T/ha (both according to the 
Direct Land Use Change Assessment tool (Ref. 13) used in standard LCA). According to the literature, the upper 
bound for above and belowground carbon stored in forest in the Midwestern US is 159 T/ha40 and the lower 
bound was 77 T/ha.41 Carbon estimates for grassland in the region range from 11.9 T/ha42 to 4.9 T/ha.43 

3.2.2. Nutrient Export  
3.2.2.1. Overview 

We use the InVEST (v 3.2) nutrient model to estimate Nitrogen (N) export for each scenario. The full description 
of the InVEST nutrient model can be found in the InVEST User’s Guide online.44 For each pixel, the model 
computes the nitrogen load, i.e. the amount of nitrogen running off the pixel (either by surface or subsurface 
flow), and the transport coefficient, termed nutrient delivery ratio (NDR). NDR is a factor between 0 and 1 that 
represents the amount of nitrogen that actually reaches the stream, based on the landscape properties (slope, 
land cover, etc.) between the pixel and the stream. 

3.2.2.2. Inputs and Assumptions 

Generally, values for N loads and efficiencies are sourced from the InVEST parameter database 
(Supplementary Table 14). For the land-use change scenarios to meet the required production increase, N 
loads for new agriculture (sugarcane or maize) are computed as the product of fertilizer application rates and 
N use efficiency. Fertilizer application rates are based on ecoinvent 2.2 or local literature (Supplementary Table 
14). N use efficiency is set to a global average value of 0.645. Biophysical tables used in the model are reported 
in Supplementary Note 3. 

Supplementary Table 14. Input data for the InVEST nutrient model 

Input Description and source Main assumptions  

LULC Land use land cover map 
Source: MODIS, w/ logistic LCM 

Cf. Section 3.1.3 
Uncertainty tested by running alternate scenarios 

DEM Digital Elevation Model (topography) 
Source: SRTM 

- 

N loads 
N efficiencies 

Parameters describing the N inputs to 
the system (N loads), and the N 
retention (N efficiency) for each LULC 
Source: InVEST database*, ecoInvent 
2.2 and local studies** 

For most LULC, parameter values are set to the 
average value for the state or the region 
Loads for new agricultural land are specific to 
sugarcane or maize** 
Loads for intensification areas are based on 
relative change in yield for each scenario  

Proportion 
subsurface 

Parameter describing the proportion of 
N load leaching to groundwater 
Source: local studies** 

Leaching only occurs on agricultural land 
 

Subsurface flow 
distance and 
efficiency 

Parameters describing the attenuation 
of N in groundwater flow 
Source: Default values in InVEST 

Default values are used since these parameters 
are difficult to find locally. Because of the low 
leaching rates, the model is not very sensitive to 
these parameters 

Threshold flow 
accumulation 

Iowa: 500 
Mato Grosso: 600 

- 

k, Default values - 
*This database was developed by the Natural Capital Project and comprises model parameter values sourced from hundreds of peer-
reviewed studies. The database is available at: 
http://naturalcapitalproject.org/pubs/BiophysicalParameter_database_7_Jun_2013.accdb 
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** For expansion sugarcane/maize: Mato Grosso: N application rate: 55 kg/ha (ecoinvent 2.2; Lopes, A.S., 2004. Fertilizer use by crop 
in Brazil. FAO, Rome), Leaching rate: 1.5% from Ref. 77; Iowa: N application rate: 157.2 kg/ha (ecoInvent 2.2;  IFA, 2006. World 
Fertilizer Use Manual), leaching rate: 8% average value from Ref. 92 for the Corn Belt; N use efficiency: 0.6 (see text for details). 

 
3.2.2.3. Impacts of Intensification 

In reviewing the effect of intensification practices on nutrient dynamics (cf. Supplementary Note 4), we find 
impacts to be very heterogeneous. To represent intensification in Mato Grosso, we calculate the increase in 
fertilizer application necessary to reach the intensified yield (0), relative to baseline (average current) yields. 
While the availability of other nutrients (notably Phosphorus and Potassium) along with pesticides, seeds, 
machinery and knowledge can also limit the crop yields, we focus on N because N availability is considered the 
main limiting factor for crops in these regions.46 For each production scenario, we then increase N loads for 
intensification areas by that percentage. (As noted in Section 3.1.1, no intensification is expected in Iowa.) 

The additional N required to reach the intensification target is determined by reversing the underlying 
equations in the InVEST crop model, which are based on Mueller et al.’s47 global study of fertilizer application 
rates and relationships to crop yields for 12 focal crops, including sugarcane. This relationship, a nonlinear 
regression, is derived independently for 100 different climate types or “bins”, defined by growing degree days 
and annual precipitation. Climate bins are mapped at 10 x 10 km spatial resolution and the climate bin assigned 
to any spatial location is available in the InVEST crop model database.48 To estimate the N application rate 
(𝑁𝐶𝐵, in kg/ha) required for sugarcane yield in a particular climate bin (CB), assuming no other nutrients are 
limiting, we apply the following equation (adapted from Equation S2 of the Supplemental Material in Ref. 47):  

𝑁𝐶𝐵 =
−ln

1 − (
𝑌𝑚𝑎𝑥𝐶𝐵

𝑌𝑚𝑜𝑑
)

𝑏𝑁

𝑐𝑁
 

where 𝑌𝑚𝑎𝑥𝐶𝐵
 is the maximum sugarcane yield attainable in a particular climate bin, 𝑌𝑚𝑜𝑑 is the sugarcane 

yield for which the N application is being modeled, 𝑐𝑁 and 𝑏𝑁 are parameters defined by the nonlinear 
regression for sugarcane (Ref. 47). These variables are all available for each of the 12 staple crops in the InVEST 
crop model database.  

This equation is applied to baseline yields as well as intensified yields under the different volume production 

scenarios in order to derive the N required to achieve the production level in each scenario (Supplementary 

Table 15). We take an area-weighted average of the N required to reach the yield target across the entire 

agricultural expansion area (which for simplicity is also where all intensification is assigned), based on the 

number of pixels in each climate bin (Supplementary Note 5). The application rates for the different scenarios 

are divided by the application rates for current yields to arrive at the percent increase in N application required 

for each scenario (Supplementary Table 15).  

For example, in Mato Grosso, the baseline application rate for sugarcane in Brazil is 55 kg/ha (Ref. 46) and for 
scenario 3 the relative increase in fertilizer application to achieve the intensified yield is 28.1% (or increased 
by a factor of 1.281). With the N use efficiency of 0.6, this gives: load_n = 55 x 1.281 x (1-0.6) = 28.2 kg/ha. 

Supplementary Table 15. Intensification modeled to reach yield target from current average sugarcane yields.  

Scenario 
Tonnes from 

intensification 
Intensification 

Area  
Increased N app rate 
for Intensified Yield 

1 39840 7504 21.4% 

2 157222 28059 27.3% 

3 590469 104730 28.1% 
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3.2.2.4. Model Sensitivity and Verification 
3.2.2.4.1. Sensitivity analyses 

A major uncertainty in assessing nutrient impacts is related to N loads, i.e. sources of nutrients in the 
landscape. For agricultural land, these are driven by the fertilizer inputs and the amount of leaching. In the 
LUCI-LCA approach, we assess the effect of errors in this input by running the model for Scenario 3 with lower 
and upper bounds for these parameters.  
 
Sugarcane in Mato Grosso 
We use a weighted-average N application rate of 55 kg N/ha for sugarcane in Brazil based on an FAO report 

(Ref. 46). According to this study, the rates can vary from 14 kg N/ha in the North to 76 kg N/ha in the 
South.  Other reports49 suggests that N application rates are about 78 kg N/ha. In a following study50, the 
author used an average of 60 kg N/ha, with the sugarcane yield of 72.52 T/ha. In a sensitivity analysis, he used 
minimum and maximum values of 35 kg N/ha and 97 kg N/ha, respectively, with a standard deviation of 16 kg 
N/ha. This range represents an error of approximately 45%, which we use in our analysis. Based on these 
uncertainty bounds, the additional N export from Scenario 3 changes by -42% and 37% relative to the original 
estimate. 
 
Maize in Iowa 
According to IFA 200651, the N application rate can range from 145 kg N/ha in the western part of the maize 
belt to 179 kg N/ha in the eastern part. This corresponds to a range of approximately 10%.  In a US study by 
Grassini et al.52, average N application rates ranged from 158 kg N/ha in Iowa, to 183 kg N/ha in Nebraska. 
Similar ranges are found in recommendations by Iowa State University53 (140 to 190 kg N/ha), which leads us 
to consider a relative error of 15%. Based on these uncertainty bounds, the additional N export from Scenario 
3 changed by -7% and 23% relative to the original estimate. 
 
3.2.2.4.2. Model verification 

To assess the credibility of our results, we compared InVEST nutrient export predictions with estimates from 
a global model (NEWS2) and from local empirical data (Supplementary Table 16). Comparison with NEWS2 
and local sources suggest that InVEST underestimates total N export. This could be due the omission of other 
sources of nutrients in InVEST (e.g. point loads, especially in IA) and simplified representation of transport: in 
particular, the model simplifies the complex processes that drive nutrient degradation in surface and 
subsurface flows. However, the model correctly predicts Iowa as the location with the higher standardized N 
exports (i.e. per ha), which suggest that the relative difference between the scenarios is credible. 

Supplementary Table 16. Comparison of InVEST results with alternative nutrient data, for total N export (kg/ha/yr). 
 

Sugarcane, Mato Grosso Maize, Iowa 

InVEST 0.26 1.66 

NEWS2*  [1-2] [2-3] 

Other sources54,55 [4.1; 54] [4-74] 

*NEWS2 is a global model of nutrient emissions developed by Mayorga et al.56 , which was calibrated against observations and 

accounts for both point sources and non-point sources of nutrients. See calculation details in the study by The Nature Conservancy 
available at: http://nature.ly/TNC-Dow-Brazil (“verification of hydrologic model predictions”). Here, we use the range for “pristine 
catchments” given the small proportion of agriculture in the baseline scenario. 

3.2.3. Water Consumption 
3.2.3.1. Methods 

To assess the impact of agricultural expansion on water availability, we compute the irrigation water 
requirements and the resulting water consumption per tonne of product. 

http://nature.ly/TNC-Dow-Brazil
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Net irrigation requirements, i.e. the amount of water needed by specific crops to grow, are computed based 
on a water balance at the monthly time scale57, for each month of the growing period (April to August in Iowa, 
May to October in Mato Grosso). For each cropland pixel, and each month, the net irrigation requirements 
(Irrn) are: 

𝐼𝑟𝑟𝑛 = {
𝑘𝑐𝐸𝑇0 − 𝑃𝑎𝑣𝑎𝑖𝑙    𝑖𝑓   𝑘𝑐𝐸𝑇0 > 𝑃𝑎𝑣𝑎𝑖𝑙

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
, 

where kc is the crop factor for the crop of interest, ET0 is the reference evapotranspiration, and Pavail is the 
available precipitation, i.e. the amount of precipitation that did not leave as quick flow and is available to 
crops. Pavail is computed at the monthly time step with the InVEST index water model (cf. Supplementary Table 
17, “Quickflow”), based on mean monthly precipitation and number of rain events. Given that the amount of 
quick flow was small (<5% relative to precipitation), with little variation between months and pixels, we set it 
to a constant value of 5%. 

Net irrigation requirements are converted into predicted water consumption for irrigation. This is achieved by 
accounting for two factors: the irrigation efficiency, since some water extracted for irrigation is lost before 
reaching the crops; and the current irrigation rate, which is based on existing irrigation rates in the states of 
interest (some areas need irrigation in theory but are either restricted or lack equipment).  

Irrigation efficiency is based on Rohwer et al. (Ref. 11; Supplementary Table 17), a dataset that provides more 
accurate information than the commonly used method developed by Doll and Siebert (Ref. 57). Note that 
irrigation efficiencies are averages for all crops, at the country level, in the absence of local data. The amount 
of water extracted to meet irrigation needs, or gross irrigation requirements (Irrg), is: 

𝐼𝑟𝑟𝑔 =
𝐼𝑟𝑟𝑛

𝐸
 

Predicted irrigation volumes, i.e. the amount of water likely to be used by farmers in the field, are based on 
current irrigation rates. Due to lack of infrastructure, water regulations, or a decision not to irrigate, farmers 
do not always irrigate at the theoretical rates calculated above (Irr_g). We use current irrigation rates for all 
the expansion areas from global statistics: specifically, local data and a gridded dataset from Aquastat58, which 
estimates the percentage of area actually irrigated as a function of areas equipped with irrigation (resolution 
of ~12km, see details in Supplementary Table 17). For each site, we compute the average percentage of area 
actually irrigated, AAI, and compute predicted irrigation volume (Irrp) as: 

𝐼𝑟𝑟𝑝 = 𝐼𝑟𝑟𝑔×𝐴𝐴𝐼 

The water consumption (WC, in m3/T product) only accounts for water evapotranspired or incorporated in a 
product and is therefore calculated as:  

𝑊𝐶 =
𝐼𝑟𝑟𝑝 ×𝐸 

𝑃𝑟𝑜𝑑
=

𝐼𝑟𝑟𝑛 ∗ 𝐴𝐴𝐼

𝑃𝑟𝑜𝑑
 

Where Prod is the amount of HDPE in tonnes. 

3.2.3.2. Inputs and Assumptions 

A summary of model inputs and assumptions is provided below. 

Supplementary Table 17. Inputs to the blue water consumption model 

 Description and source Main assumptions/processing 

Monthly 
precipitation 

Gridded dataset at 30s resolution (~1km) 
Source: WorldClim14 a 

Data from period 1950-2000 

Monthly reference 
evapotranspiration 

Gridded dataset at 30s resolution (~1km) 
Source: CGIAR (original source is WorldClim 
data, cf. precipitation dataa) 

Data from period 1950-2000 
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Kc Crop factors for sugarcane or maize 
Source: AquaStat59 (Annex 2 provides Kc 
values per crop; Annex 4 provides irrigated 
crop calendar per country) 

We assume crops are potentially irrigated (depending 
on needs) from planting month to harvest (April to 
August for maize, May to August for sugarcane) 
For the baseline, given the lack of crop-specific 
information, we set Kc for all Ag to the value of the 
crop of interest (maize for Iowa, sugarcane for Mato 
Grosso). This is reasonable given that other crops will 
have similar crop coefficients, and the focus of the 
modeling is on the difference between baseline and 
expansion scenarios (so the error on other crops will 
cancel out). 

Quickflow InVEST Seasonal Water yield model (in 
development) 

Quickflow is an intermediate output from the InVEST 
seasonal water yield model, simply based on the 
Curve Number approach (see InVEST seasonal water 
yield model60). For simplicity, we used a single soil 
type (hydrologic group B). Number of rainy days are 
obtained from local sources b. 

Irrigation 
efficiency 

Ratio of water used by crops over water 
extracted for irrigation (Ref. 11)  

 

Areas actually 
irrigated 

Gridded map of actual irrigation (based on 
equipment and decision to actually irrigate) 
for 2005 
Source: FAO data (Siebert et al.58) 

Given the coarseness of the data, we average these 
data at the watershed scale to estimate the regional 
irrigation level. 

Withdrawals Total withdrawals per basin 
Source: Aqueduct61 

In the Aqueduct model, water is routed from one 
subwatershed to another, such that the blue water 
should be obtained from only the most downstream 
subwatershed (not summing blue water values across 
the watershed area). In IA, however, since some 
watershed areas belong to a different basin (HUC4 
#10 vs #7 for most of IA), they are not draining to the 
same outlet). The blue water contribution from these 
subwatersheds is thus added to the main outlet (in 
basin #7) to obtain total blue water. 

Available water Total blue water per basin 
Source: Aqueduct 

a MG data were all reprojected to Mercator since original projection (Brazil polyconic -SAD69)  
b Number of rainy days: Iowa: http://www.usclimatedata.com/climate/iowa/united-states/3185; Mato Grosso: 
data.worldbank.org/developers/climate-data-api 

 
3.2.3.3. Model Sensitivity and Verification 

Regional assessments of irrigation water consumption comprise a number of uncertainties. We summarize 
and discuss the main sources of uncertainty in Supplementary Table 18 below. An important consideration is 
the time scale: in our calculations, hydrologic data are long-term averages to reduce the effect of climate 
variability, whereas some datasets represent recent years only (e.g., withdrawals). We do not assess the effect 
of these uncertainties individually. 

Supplementary Table 18. Main sources of uncertainty for the quantitative estimates of water consumption 

Source of uncertainty Level of uncertainty  

Precipitation inputs Medium. Precipitation is from the 1950-2000 period to produce long-term results.  
Impacts of climate change are not considered in this analysis; they are likely to 
increase actual irrigation water consumption in Iowa  

Reference evapotranspiration 
inputs 

Low. Reference evapotranspiration, similar to precipitation, is computed for 1950-
2000. See precipitation inputs for comments on climate change 

Quick flow (runoff assumed to be 
unavailable to plants) 

Low. Quick flow is estimated from InVEST based on monthly data (disaggregated to 
daily). Rerunning the IA assuming 0 quickflow (i.e. the extreme opposite), yields a 
difference in baseline requirements of 10%. 

Error in crop coefficients* Medium. Trials for IA yield a difference of 38% for June 
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Error in total withdrawals in total 
blue water (from Aqueduct) 

Medium. Aqueduct data are based on 1950-2008. These estimates are from 
disaggregated country-level data using regression based on proxies for industrial, 
agricultural, and domestic uses. Data for global analysis may be uncertain.  

*We note that model outputs are a linear function of these factors so the effect of their uncertainty can be assessed by propagating 
the error linearly. 

3.2.3.3.1. Irrigation and water yield volumes 

To verify predicted irrigation volumes in Iowa, we compare our estimates with USGS data.62 In 2010, daily 
irrigation use in Iowa was 42.8 Mgal or 0.00016 km3. Correcting for area since the watershed considered was 
larger than the state of Iowa, and multiplying over a year, this yields an annual irrigation water volume of 0.09 
km3. We note that this correction is approximate since areas in the North-east, outside the state of Iowa, are 
responsible for a large proportion of the irrigation requirements in this region. Similarly, we compare the total 
irrigated areas (116,000 ha vs. 115,000 ha, for USGS and our estimates, respectively), and the total 
withdrawals (6.5 km3/yr vs. 9.7 km3/yr, for USGS and our estimates, respectively). This verification suggests 
that the values for Iowa are reasonable first-order estimates.  

In Mato Grosso, similar data are not available so we simply verify the amount of available blue water (from 
Aqueduct) with the uncalibrated InVEST annual water yield model (which uses the precipitation, reference 
evapotranspiration inputs). The error is 35% for Mato Grosso (and 16% for Iowa), indicating potential errors 
in model inputs but suggesting that estimates are credible. 

3.2.3.3.2. Comparison with other studies’ results 

Although water consumption values (in m3/T crop) are similar across scenarios, they are very sensitive to 
assumptions about actual water requirements. We compare our results to several other sources, as 
summarized in Supplementary Table 19. Our results differ from those of Mekonnen and Hoekstra (Ref. 10) in 
terms of magnitude and ranking (water consumption for sugarcane is higher than maize in our study, but lower 
according to Ref. 10). This could be due to the differences in data sources and processing (see 3.3.3), and 
points to large uncertainties in the calculations of water consumption metrics (Ref. 10). 

Supplementary Table 19. Water consumption (in m3/T crop) for sugarcane (Mato Grosso) and maize (Iowa). (Note, 
main results in manuscript are presented in m3/T HDPE, but for direct comparison to other sources we keep units as 
water consumed per crop here.) 

 Sugarcane (MG) Maize (IA) 

LUCI-LCA  2 1 

LUCI-LCA Lower and Upper bounds* [0.48; 2.5] [0.18; 1.6] 

Mekonnen and Hoekstra (Ref. 10) 0.7 2 

Other sources [0.7-1.85] a 
0.3 b 

~9 c 

*For Mato Grosso: Lower bound is based on irrigation volumes needed for “salvage irrigation”, described by Hernandes et al.63 

Upper bound is based on one standard deviation of the percentage of actually irrigated area across the region of interest (cf. 
Supplementary Table 18, we compute “Areas actually irrigated” from the average under the watershed). 
For Iowa: Similar to the upper bound for Mato Grosso, the lower and upper bounds are based on one standard deviation of the 
percentage of actually irrigated area. 
a Based on Ref. 63   b This number corresponds to the irrigation requirements assuming a “salvage irrigation” of 60 mm, for 12% of 

the sugarcane areas, based on data from Ref. 63   c Based on Shapouri et al.64 This study suggests 5% irrigation in Iowa. 

3.2.4. Sediment Export 
3.2.4.1. Overview 

We use the InVEST (v 3.2) sediment model to estimate sediment export for each scenario. The full description 
of the InVEST sediment model can be found in the InVEST User’s Guide online.65 The model computes the soil 
loss, i.e. the amount of sediment produced on each pixel, and the transport coefficient, termed sediment 
delivery ratio (SDR). SDR is a factor between 0 and 1 that represents the amount of soil loss that actually 
reaches the stream, based on the landscape properties (slope, LULC) between the pixel and the stream. 
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3.2.4.2. Inputs and Assumptions 

To inform parameter selection, we review the effect of intensification practices on sediment dynamics (cf. 
Supplementary Note 4), finding the impacts to be very heterogeneous. Sediment export is more related to 
Best Management Practices than to the level of intensification. For this reason, we model all agricultural land 
with the same generic coefficients (the C and P factors of the sediment model, controlling soil loss in a pixel), 
thereby ignoring the distinction between standard and intensified production. 

We summarize the input data sources and assumptions in Supplementary Table 20. Empirical values for the C 
(crop management) and P (practice) factors are derived from the InVEST database (see Supplementary Table 
20 for details). When insufficient data is available for the state (either Mato Grosso or Iowa), we use regional 
data (South or North America). As noted above, C and P factors for both the baseline and expanded agricultural 
areas are set to the average of current agricultural land for the area (not specific to sugarcane or maize). Final 
biophysical tables used in the model are reported in Supplementary Note 3. 

Supplementary Table 20. Input data for the InVEST sediment model 

Input Source Main assumptions 

LULC Land use land cover map 
Source: MODIS, w/ logistic LCM 

Cf. Section 3.1.3 
Uncertainty tested by running alternative scenarios 

Erosivity layer Iowa: USDA Isoerodent maps of 
the US;  

Mato Grosso: Roose et al.66 

based on annual precipitation 

by WorldClim (Ref. 29) 

 

Erodibility layer Iowa: USGS (STATSGO database) 
Mato Grosso: SOTER database 

 

DEM SRTM - 

USLE C factor  
USLE P factor 

InVEST database* For each LULC, parameter values are set to the 
average value for the state or the region  
Parameters for current and future agricultural land 
are assumed to be the same as general agriculture 
(not specific to sugarcane or maize) 

Threshold flow 
accumulation 

Iowa: 500 
Mato Grosso: 600 

- 

k, IC0, SDRmax Default values - 

*This database was developed by the Natural Capital Project and comprises model parameter values sourced from hundreds of 

peer-reviewed studies. The database is available at: 
http://naturalcapitalproject.org/pubs/BiophysicalParameter_database_7_Jun_2013.accdb 

3.2.4.3. Model Sensitivity and Verification 
 

3.2.4.3.1. Sensitivity analyses 

A major uncertainty in assessing sediment impacts is related to the C factors, i.e. which are empirical 
parameters representing the amount of soil loss relative to bare soil. As detailed in Supplementary Table 20, 
the LUCI-LCA approach uses regional parameters derived from the peer-reviewed literature. We assess the 
effect of errors in this input by running the model for Scenario 3 with an uncertainty bound of 50% around 
baseline values, which correspond to a typical error around these parameters (Hamel et al.67, Chaplin Kramer 
et al.68). Based on these uncertainty bounds, the additional sediment export from Scenario 3 varies from -53% 
to 71%, and from -64% to 60%, respectively, in Iowa and Mato Grosso, relative to the original estimate. 

3.2.4.3.2. Model verification 

We verify the magnitude of InVEST predictions by comparing them with one global model (BQART69) and local 
empirical studies (Supplementary Table 21). Given the large uncertainties in sediment and nutrient modeling, 
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especially for ungauged basins,70 it is outside the scope of this study to reduce modeling uncertainty in the 
sediment export estimates. The accuracy of these values impacts the results of the LUCI-LCA to the extent that 
absolute predictions are used. However, relative difference in sediment exports is more robust.  

Supplementary Table 21. Comparison of InVEST results with alternative data for sediment export (T/ha/yr) 

  Mato Grosso Iowa 

BQART  0.83 0.45 

Regional studies*54,55 [0.04;0.74] [0.2-17] 

InVEST 0.71 2.1 

* Garret (Ref. 54) for Iowa; Fonesca et al. (Ref. 55) for Mato Grosso. See calculation details in a study by The Nature Conservancy 
study at: http://nature.ly/TNC-Dow-Brazil (“verification of hydrologic model predictions”) 
 

Sediment yield in Mato Grosso is consistent with values from the BQART model (Supplementary Table 21). In 
Iowa, InVEST seems to overestimate the sediment yield; however, BQART is limited in the representation of 
agriculture (human modifications to a basin are represented by a factor that equals 1 for Mato Grosso, vs. 2 
for Iowa), which certainly underestimates the impact of agriculture (97% of LULC). Overall, the order of 
magnitude predicted by InVEST is in line with BQART and regional studies. 

3.2.5. MSA Reduction 
3.2.5.1. Overview 

We use the InVEST (v 3.2) GLOBIO model to estimate biodiversity impacts. GLOBIO uses a meta-analysis of 
studies around the world to derive changes in mean species abundance (MSA) resulting from different 
anthropogenic threats. We examine differences in MSA between baseline (2007) and scenario landscapes, and 
summarize the area-weighted average reduction in MSA and total affected area (through occupation or 
fragmentation) where biodiversity is impacted by land-use change 

3.2.5.2. Inputs and Assumptions 

The full description of the InVEST GLOBIO model can be found in the InVEST User’s Guide online.71 The three 
sources of threat considered in this model are land-use (affecting only the pixel of the new expanded 
agricultural land), fragmentation (affected by changes in nearby pixels), and infrastructure (affected by 
changes in nearby pixels; but not altered in the scenarios explored here). We summarize the data sources and 
assumptions in Supplementary Table 22.  

Supplementary Table 22. Input data for the InVEST GLOBIO model 

Input Source Main assumptions 

LULC Land use land cover map 
Source: MODIS, w/ logistic LCM 

Cf. Section 3.1.3 
Uncertainty tested by running alternative scenarios 

Road map OpenStreetMap.org Unnecessary to examine reductions in MSA from baseline; but 
included in order to assess differences in baseline between 
regions. More types of infrastructure could be included for a 
better estimate of total threat, but this is the best globally-
available source. 

Pasture map Ramankutty et al.72 Yr 2000, 10 km resolution, proportional area in pasture 

Potential 
vegetation map 

Ramankutty & Foley73 50 km resolution, represents the world’s vegetation cover that 
would most likely exist for 1986-1995 in equilibrium with 
present-day climate and natural disturbance, in the absence 
of human activities 

Primary threshold Set at 0.25 for both regions Value for amount of primary habitat defined using FFQI to 
match GLOBIO database estimate in each region 

Pasture threshold Set at 0.5 for Iowa; 0.75 for 
Mato Grosso 

Values for amount of pasture to match FAO estimates for each 
region 

http://nature.ly/TNC-Dow-Brazil
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Intensification 
threshold 

Set at 0.95 for Iowa; 0.5 for 
Mato Grosso 

Values for proportion of intensification in each region, based 

on yield gap calculated by Foley et al.74 

MODIS to GLOBIO 
conversion table 

InVEST GLOBIO model All forest types lumped; all grassland, savanna types lumped 
(partitioned by potential veg., pasture maps) 

MSA parameter 
table 

InVEST GLOBIO model  Based on meta-analysis in Alkemade et al.75; std. errors of 

mean effects included in uncertainty analysis 

 

An MSA estimation ranges from 0 to 1, indicating the average proportional change in abundance of individual 
species in a location compared to the average abundance of the species within a pristine ecosystem. An MSA 
of 1.0 implies that, on average, species abundances are the same as in pristine land while an MSA of 0.0 implies 
that average species abundance is zero (i.e. locally extinct).  

The typical use of MSA is to report an average value for a region, but when considering the impacts of localized 
agricultural expansion, relatively large local changes can be masked by the overall size of the landscape that 
is not changing. In our case study, the production scenarios convert <1% of the overall landscape. Biodiversity 
impacts should be considered in terms of their local rather than aggregate effects, in order to form a more 
conservative estimate of impacts especially for species whose ranges may be limited. We therefore subtract 
the scenario MSA maps from the baseline (2007) MSA maps for Iowa and Mato Grosso, and report results as 
averaged only over those pixels whose MSA values changed due to the agricultural expansion scenarios. This 
extends beyond the pixels that are actually converted from natural habitat to agriculture because the 
remaining habitat’s configuration is altered by the conversion. Thus, MSA within unconverted habitat may still 
decline due to fragmentation resulting from agricultural expansion. 

Because the method used in standard LCA multiplies the characterization factor in MSA by the area occupied 
or transformed (amortized for 20 years), we follow the same method to keep the two approaches as 
comparable as possible. However, we do not multiply only by the area of agricultural expansion, but the total 
impacted area, which includes both areas that have converted (from natural habitat to crop) as well as the 
areas that have been affected by fragmentation through their proximity to converted areas. (Supplementary 
Table 23). 

Supplementary Table 23. Area of impact for Mean Species Abundance (MSA) 

 

 

 

 

 

 

Impacted area could also be smaller than converted area if the area studied had very little habitat remaining, 
with some of that remaining habitat registering MSA values as low as the agriculture replacing it. In this case 
study, Mato Grosso has a larger area impacted than converted, as a result of fragmentation, while Iowa has 
a slightly smaller area impacted than converted 

3.2.5.3. Model Sensitivity  

To test the model’s sensitivity to the error in MSA values for each land use related impact (land transformation, 
fragmentation, and infrastructure (e.g. roads)), we run the model with upper and lower bounds set at the 
mean MSA value plus or minus the standard error given in the meta-analysis by Alkemade et al. (Ref. 75). 
Based on these uncertainty bounds, the MSA by area impact from Scenario 3 varies from -51% to 68%, and 
from -32% to 11%, respectively, in Iowa and Mato Grosso, relative to the original estimate. 

Study area Crop HDPE demand (T) Area 
converted (ha) 

Area impacted 
(ha) 

MT Sugarcane 23,000 7,504 12,850 
MT Sugarcane 86,000 28,059 56,875 
MT Sugarcane 321,000 104,730 209,075 
IA Maize 23,000 12,008 11,775 
IA Maize 86,000 44,898 42,825 
IA Maize 321,000 167,584 159,825 
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3.3. Integrating the predictive, spatially explicit information into LCA 

The outputs of the individual InVEST models described in Section 3.2 are used to estimate ecosystem impacts 
and to directly substitute key elements (inventory data) in the agricultural stage of standard LCA. Adaptations, 
which transform the standard LCA into LUCI-LCA, are described next, for each of the LCA impact categories 
considered in this study.   

3.3.1. Global Warming Potential 

In LUCI-LCA, results of spatially explicit modelling substitute elements of the LCA, changing the estimates of 
carbon dioxide emissions from land use change. We also consider the spatially explicit impacts of agricultural 
intensification and irrigation on Global Warming Potential. 

3.3.1.1. Greenhouse gas emissions from land use change 

In LUCI-LCA, the output from the InVEST carbon edge effects model replaces results from the Direct Land Use 
Change Assessment tool (Ref. 13) that are used in the standard LCA. Specifically we replace the “CO2 emissions 
from transformation” component of the life-cycle inventory (Figure 1, main manuscript).  

The land use change (carbon loss) results provided from the InVEST model are based on the total amount of 

crop required to meet the demand for bio-HDPE for the different scenarios prior to allocation. In order to use 

these results in the LCA, they are allocated to HDPE, amortized over 20 years and converted into carbon 

dioxide equivalents (CO2-eq.). The carbon dioxide emissions from land use change in the LCA are substituted 

with these updated results from the InVEST model. 

The key points of difference between the approaches are; 1) emissions induced by land use change are 
spatially explicit in LUCI-LCA; 2) trends in land use change are evaluated on a regional (state) level (rather than 
country level) and; 3) impacts are based on the difference between current and predicted future change 
(rather than historical change over the last 20 years). The amount of different habitat types considered as 
changed are different between the two approaches, with standard LCA suggesting much more forest loss in 
Mato Grosso than is predicted by the logistic LCM, and no forest loss in Iowa, in contrast to LUCI 
(Supplementary Figure 4). 

3.3.1.2. Greenhouse gas emissions from irrigation  

Updated irrigation water volumes modelled as described in 3.2.3 are used to estimate the greenhouse gas 

emissions from the electricity required for pumping water during irrigation.    

The sugarcane and maize datasets are updated to include irrigation based on 2.66% and 0.53% of the crop 

areas being irrigated respectively. The average volumes of water for irrigation of the sugarcane and maize 

used in the LUCI-LCA are calculated from irrigation volume (km3) as given in Supplementary Table 24 and 25.  

Supplementary Table 24. Irrigation volumes sugarcane (2.66% of crop irrigated)  

Scenario 1 2 3 

HDPE (T) 23,000 86,000 321,000 

Irrigation water (km3) 0.0032 0.0123 0.0463 

Irrigation water (m3T-1 sugarcane) 5.20 5.34 5.39 

Consumed water (m3T-1 sugarcane) 2.0 2.0 2.0 

Supplementary Table 25. Irrigation volumes maize (0.53% of crop irrigated)  

Scenario 1 2 3 

HDPE (T) 23,000 86,000 321,000 

Irrigation water (km3) 0.00024 0.00088 0.00314 

Irrigation water (m3T-1 maize) 1.76 1.75 1.68 

Consumed water (m3T-1 maize) 1.0 1.0 0.9 
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3.3.1.3. Greenhouse gas emissions resulting from intensification (sugarcane)   

Life cycle inventories for sugarcane cultivation are updated to consider the impact from intensification, 

although as noted previously maize is considered to be close to its maximum yield (See section 3.1). The 

intensification includes increase in yield and additional nitrogen fertilizer application. 

3.3.1.3.1. Increase in yield 

The percentage increase from the current spatially explicit weighted average yield to reach the theoretical 

intensified yield for each scenario is considered as given in Supplementary Table 26.  

Supplementary Table 26. Calculating the increase in yield for each scenario 

Scenario 
Current yield 
(T/ha) 

Theoretical intensified yield 
(T/ha) 

Increase in yield 

1 76.68 

81.99 

6.93% 

2 76.39 7.33% 

3 76.35 7.39% 

In the LUCI-LCA, the yield increase is applied to the total results from the agricultural stage of the life cycle.  

3.3.1.3.2. Increase in nitrogen fertilizer application  

A factor representing the relative increase in N is derived from the nutrient model (section 3.2.2.3) and applied 

to derive the additional amount of N-fertilizers used (ammonium nitrate phosphate, ammonium sulphate, 

diammonium phosphate, potassium nitrate and urea) and therefore additional greenhouse gas emissions from 

their production is linearly derived. The increase in transport requirements to deliver the additional quantities 

of fertilizers to the farms is also considered, as well as the additional emissions of nitrous oxide, ammonia, 

nitrate and nitrogen oxides at the farm. Supplementary Table 27 provides a summary of inputs from InVEST 

used to estimate the intensification from an increase in nitrogen fertilizer application. 

Supplementary Table 27. Inputs from InVEST used to estimate intensification from increase in nitrogen fertilizer 

application 

Scenario Tonnes from intensification Increase in N 

1 39,840 21% 

2 157,222 27% 

3 590,469 28% 

An explanation of how to consider additional transportation is given in section 3.3.1.3.3 and N related 

emissions associated with additional fertilizer application are given in section 3.3.1.3.4. The greenhouse gas 

emissions induced are added to the Life Cycle Inventory, completing emissions occurring from the other 

agricultural activities. 

3.3.1.3.3. Additional Transportation of N-Fertilizer 

The additional transport steps required for the additional N-fertilizer are estimated using the following data 

from econinvent: ‘RER: transport, freight, rail,’ ‘RER: transport, lorry >16t, fleet average’ and ‘RER: transport, 

lorry 3.5-16t, fleet average’. The contribution of the N-fertilizer transport steps in the ‘BR: sugarcane, at farm’ 

to other raw materials is based on the relative contribution of fertilizers given in tables 10.17 and 10.19 in 

Jungbluth et al. (Ref. 2), combined with the ratio of N to P2O5 and K2O-fertilizers in the sugarcane dataset. The 

ratio of N to P2O5 and K2O-fertilizers is based on weight of the fertilizers rather than the nutrient content (e.g. 

urea, as N refers to 1 kg N, which is 2.17 kg urea with an N-content of 46%). This results in the following life 

cycle inventory for the transport of nitrogen fertilizer per ha of sugarcane cultivation: RER: transport, freight, 
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rail [Railway]: 49.5 tkm, RER: transport, lorry >16t, fleet average [Flows]: 8.27 tkm and RER: transport, lorry 

3.5-16t, fleet average [Street]: 1.32 tkm. The resource use and emissions from the transportation of additional 

N fertilizer are calculated by multiplication of these values by the fraction of relative N increase and attributing 

to the amount of product coming from intensification (Supplementary Table 15). 

3.3.1.3.4. Additional N related emissions associated with fertilizer production and application 

The factors applied to calculate emissions of ammonia, nitrous oxide and nitrate in sugar cane and maize 

inventories in ecoinvent assume a linear relationship between the levels of inputs per hectare and the level of 

emissions per hectare (Ref. 2; Nemecek et al.76). For consistency with the ecoinvent approach and IPCC 

approach (Ref. 32) the increase of N-related emissions per hectare are assumed to be directly proportional to 

the increase in N-fertilizer use per hectare. This means that the additional emissions from the application of 

additional fertilizer are calculated as a fraction of total emissions per ha, based on the factor describing the 

increase of fertilizer rate (Supplementary Table 27). These emissions are later attributed to the production 

volume, based on the estimated volume of crop that is coming from intensification (Supplementary Table 27). 

3.3.2. Eutrophication Potential  

The spatially explicit modelling of nutrient loss influences the values of nitrate leaching from the fields, which 
affects the Eutrophication Potential, along with intensification and irrigation. 

Nitrogen export from the InVEST NDR model is substituted into standard LCA in place of the nitrate emissions 
to water in the agricultural inventories. The  life cycle inventory for Brazilian sugarcane in ecoinvent 2.2 (Ref. 
12) contains only a rough estimation of nitrate leaching, calculated with an emission factor of 2.5% of the N 
contained in the fertilizer, following work conducted by Stewart et al. for sugarcane fields in Australia.77 Nitrate 
emissions for maize in ecoinvent 2.2 are based on the emission factor of 32% of the N contained in the 
fertilizer. This is based on field measurements from 1987 to 1994 according to Randall et al.78 

Nitrogen loss results provided from the InVEST model are based on the total amount of crop required to meet 

the demand for bio-based HDPE for the different scenarios prior to allocation. In order to use these results in 

the LCA, they are allocated to the main product (HDPE).  

There are several key points of difference between the standard and LUCI-LCA. In standard LCA, all the N that 
has the potential to leach to groundwater is assumed to reach the surface water. The LUCI-LCA approach 
considers the configuration of landscape and its effects on N leaching. Standard LCA inventories are based on 
single yield figures and N application rates, while LUCI-LCA uses spatially differentiated yield and N application 
relationships, based on climate. Additionally, there can be some inconsistency between data in some standard 
life cycle inventories depending on data availability (e.g., in this case, estimates for sugarcane are based on a 
modelling study, while those for maize are based on direct measurements of drained fields). 

The updated impact for irrigation as given in section 3.3.1.2, and the additional impact from intensification, 

which includes increase in yield and increase in nitrogen fertilizer application as described in section 3.3.1.3 

are added to the total result.  

3.3.3. Water Consumption  

The water consumption considered here is for irrigation only, and thus replaces the life-cycle inventory for the 
volume of consumed water during the irrigation process for crop production.  

The main differences when compared to the LCA data, obtained from the WFN database79, concern the data 
sources and processing. Irrigation requirements are calculated from different sources and processed 
differently; i.e. the water balance is calculated at the daily time step or the period 1996-2002 in LCA versus 
calculations at the monthly time step for 1950-2000, for LUCI-LCA. Land use maps are from different years 
(year 2000 from Monfreda et al.80 for standard LCA; vs. 2007 MODIS data for LUCI-LCA, described in Section 
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3.1.3.2); and crop yields are obtained from two different studies (Reynolds et al.81 in LCA vs. the yield data 
described in Supplementary Note 5 for LUCI-LCA). The difference in sources is necessary for the spatially-
explicit modeling conducted in the LUCI-LCA approach. 

The water consumption values for both standard and LUCI-LCA were also evaluated according to the AWARE 
impact assessment methodology to determine if the results changed when water scarcity of the two basins 
was included. In this case, it did not change the direction of the difference between the two feedstocks (see 
Supplementary Note 6 for more details).  
 
3.3.4. Erosion Potential  

In LUCI-LCA, the InVEST method for calculating sediment export (T/yr) is a direct replacement for the Saad et 
al. (Ref. 9) approach to calculating Erosion Potential within standard LCA for the agricultural phase of the life 
cycle.  One of the main differences between the two approaches is the different reference state.  The LUCI-
LCA approach uses the current (in this case, 2007) state as a reference in contrast to the potential natural 
vegetation state used in standard LCA. The second main difference is the spatial resolution: whereas Saad et 
al.’s characterization factors for soil erosion are averaged across land use types and biomes for standard LCA, 
the LUCI-LCA approach describes a specific soil erosion for each pixel (here 500m). Third, as the standard LCA 
approach is based on the LANCA model,82 it cannot differentiate between different agricultural practices, while 
LUCI-LCA has model parameters (the C factors from the USLE equation, cf. Section 3.2.4.2, Supplementary 
Note 3) that are specific to sugarcane and maize. Finally, and perhaps most importantly, standard LCA does 
not consider landscape configuration surrounding the occupied land. The LUCI-LCA approach models the 
retention of soil by the vegetation between the occupied land and the river, thus attenuating much of the 
potential soil eroded.  
 
3.3.5. Biodiversity Damage Potential  

In LUCI-LCA, the InVEST/GLOBIO method for calculating MSA impact is a direct replacement for the De Baan 
et al.8 approach used to calculate Biodiversity Damage Potential within standard LCA for the agricultural stage 
of the life cycle. De Baan et al. also use MSA to estimate this biodiversity damage, but the method uses 
potential natural vegetation as the baseline from which to measure an effect. In LUCI-LCA we employ the 
current (2007) land use for the baseline. This is the greatest difference, and may in large part explain the orders 
of magnitude difference between the impacts estimated by the two methods. The difference between 
potential natural vegetation and currently occupied land is 0.84, many times larger than the average reduction 
in MSA on the impacted pixels found in both regions using the LUCI-LCA approach (~0.11-0.16).  

The standard LCA method also adds the effects of transformation to those of occupation, both of which are 
compared to the same potential natural vegetation state (though transformation is amortized by 20 years to 
derive an annual figure, and occupation by the number of months out of the year the land is used for the crop 
in question). Thus, transformation impacts may be small compared to the occupation impacts for biodiversity 
damage when using the standard LCA method. In contrast, the LUCI-LCA method only considers 
transformation impacts of the future land use change predicted by the LCM (also amortized over 20 years, to 
follow convention). The difficulty with the interpretation of the standard LCA method for calculating 
biodiversity damage is the implication that occupation of land converted many years ago is linked to current 
impacts, when in reality the loss of biodiversity happened at the time of the change and cannot easily be 
reinstated. The greater current threat to biodiversity is the agricultural expansion, not the occupation of 
already converted land, hence our focus on land transformation only in LUCI-LCA.  

Finally, the spatially explicit nature of the LUCI-LCA method allows several advances beyond the standard LCA 
approach. As previously mentioned, area impacted considers land that is reduced in quality due to 
fragmentation, not only transformation. Also, greater precision in current habitat types is possible due to the 
remotely sensed land cover data used, as compared to national or regional averages for standard LCA. 
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3.3.6. Sensitivity analysis 

A sensitivity analysis is presented for scenario 3 (321,000 T HDPE) for the LUCI-LCA. Here we combined the 
analyses conducted for the standard LCA (section 2.4.) with those considered for the InVEST models described 
in sections: 3.2.1.3 for Carbon Loss, 3.2.2.4 for Nutrient Export, 3.2.3.3 for Water Consumption, 3.2.4.3 for 
Sediment Export, and 3.2.5.3 for MSA Reduction. There are, however, differences in terms of the data used 
for irrigation in the standard LCA (Supplementary Table 5) and the LUCI-LCA (Supplementary Table 28).  

Supplementary Table 28. Consumed water (m3/T crop) for sugarcane (Mato Grosso) and maize (Iowa) irrigation  

 Base case Lower Upper 

Sugarcane (LUCI-LCA) 2.05 0.48 2.54 

Maize (LUCI-LCA) 0.91 0.17 1.54 

The upper and lower bounds for total life cycle impacts (Global Warming Potential and Eutrophication 
Potential) and agricultural stage life cycle impacts (Water Consumption, Erosion Potential, Biodiversity 
Damage Potential) are shown in Supplementary Table 29 for scenario 3 of HDPE production (321,000 tonnes) 
in LUCI-LCA and standard LCA.  Sensitivities for standard LCA are based on the assumption of yields (see Section 
3.3.1.3.1), as described in Section 2.5. Sensitivities for LUCI-LCA are shown for InVEST parameter uncertainty 
only, as well as for total sensitivity to parameter uncertainty and yield uncertainty. 

Supplementary Table 29. Sensitivity analysis for the effect of model parameters on estimated LCA impacts 

 
Global Warming 

Potential 
(T CO2-eq /T HDPE) 

Eutrophication 
Potential 

(T N-eq /T HDPE) 

Water 
Consumption 

(m3 water /T HDPE) 

Erosion Potential 
(T sediment /T 

HDPE) 

Biodiversity Damage 
Potential 

(MSA impact/T HDPE) 

  Maize Sugarcane Maize Sugarcane Maize Sugarcane Maize Sugarcane Maize Sugarcane 

LUCI-LCA lower 
bound (InVEST 
parameters) 

9.9 5.2 0.013 0.001 1.0 12.9 1.1 0.2 0.0015 0.0036 

LUCI-LCA upper 
bound (InVEST 
parameters) 

13.6 5.3 0.015 0.002 9.0 67.9 4.1 0.9 0.0051 0.0059 

LUCI-LCA lower 
bound (InVEST + 
yield sensitivity) 

9.4 4.9 0.013 0.0009 0.9 11.7 1.0 0.2 0.0014 0.0033 

LUCI-LCA upper 
bound (InVEST + 
yield sensitivity) 

14.4 5.6 0.015 0.002 9.7 73.7 4.4 1.0 0.0056 0.0064 

Standard LCA 
lower bound 
(yield sensitivity) 

4.6 5.9 0.035 0.0007 1.6 1.8 10.6 8.0 0.25 0.66 

Standard LCA 
upper bound 
(yield sensitivity) 

4.7 6.7 0.038 0.001 17.5 11.5 12.7 9.6 0.37 0.97 
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Supplementary Note 1 

 

Life Cycle Definitions 

From the ILCD Handbook, General Guide for Life Cycle Assessment83: 

“The attributional life cycle inventory modelling principle is also referred to as ‘accounting’, ‘book-keeping’, 

‘retrospective’, or ‘descriptive’ (or sometimes and potentially confusing: ‘average’ or ‘non-marginal’). It 

depicts the potential environmental impacts that can be attributed to a system (e.g. a product) over its life 

cycle. In attributional modelling, the system is hence modelled as it is or was (or is forecasted to be).”  

“The consequential life cycle inventory modelling principle is also called ‘change-oriented’, ‘effect-oriented’, 

‘decision-based’, ‘market-based’ and (older and incompletely / misleadingly capturing the issue: ‘marginal’ or 

‘prospective’). It aims at identifying the consequences that a decision in the foreground system has for other 

processes and systems of the economy, both in the analysed system's background system and on other 

systems. It models the analysed system around these consequences. The consequential life cycle model is 

hence not reflecting the actual (or forecasted) specific or average supply-chain, but a hypothetic generic 

supply-chain is modelled that is prognostizised along market mechanisms, and potentially including political 

interactions and consumer behaviour changes.”  
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Supplementary Note 2 

 

Land-Use Change Trends in Iowa and Mato Grosso 

 

 

Land Use in Iowa, 1997-2006 (percent of total area of state by land use) 

Iowa: 14,574,381 ha 1997 2002 2007 2012 

Woodland and pastured woodland 3.91 3.71 3.31 3.24 

Pasture and pastured cropland 9.97 8.58 7.62 5.92 

Cropland (excluding pastured cropland) 71.21 71.63 70.77 72.28 

 

Source: USDA-NASS84 

 

Land Use in Mato Grosso, Brazil 1970-2006 (percent of total area of state) 

Mato Grosso: 90,335,677 ha 1970 * 1975 1980 1985 1996 2006 

Forest 21.05 37.63 44.95 43.22 46.25 39.05 

perennial crops 0.15 0.22 0.44 0.42 0.35 0.84 

annual crops 1.69 2.43 4.78 6.10 7.06 12.68 

pasture land  77.08 59.59 49.66 50.19 46.20 47.32 

planted forest 0.04 0.12 0.17 0.08 0.15 0.12 

% total farm area/State area 0.19 0.24 0.38 0.42 0.55 0.53 

 

Source: Soler et al. 201485  
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Supplementary Note 3 

 

Biophysical tables used in InVEST models  

 
Carbon 

lucode LULC_desc 
Total C 

(IA) 
Total C 
(MT)* 

C_below 
(MT)* 

Source  
(IA) 

Source  
(MT) 

0 Water 0 0 0   

1 Evergreen Needleleaf forest 93 n/a 52.2 EC(2010)86 CDIAC87-Table S1b 

2 Evergreen Broadleaf forest 93 n/a 52.2 EC(2010) CDIAC -Table S1a 

3 Deciduous Needleleaf forest 93 n/a 24.8 EC(2010) CDIAC -Table S1b 

4 Deciduous Broadleaf forest 93 n/a 24.8 EC(2010) CDIAC -Table S1a 

5 Mixed forest 93 n/a 38.5 EC(2010) CDIAC – Table S1ab 

6 Closed shrublands 7.4 53 0 CDIAC -Table S1f CDIAC -Table S1f 

7 Open shrublands 7.4 53 0 CDIAC -Table S1f CDIAC -Table S1f 

8 Woody savannas 14.2 53 0 Qui & Turner88 CDIAC -Table S1f 

9 Savannas 14.2 53 0 Qui & Turner CDIAC -Table S1f 

10 Grasslands 6.4 7.6 0 IPCC89 IPCC 

11 Permanent wetlands 10 0 0 Qui & Turner n/a 

12 Croplands 0 0 0 n/a n/a 

13 Urban and built-up 0 0 0 n/a n/a 

14 Cropland/Natural mosaic 5 0 0 CDIAC-Table S1i n/a 

16 Barren or sparsely vegetated 0 0 0 n/a n/a 

17 Maize/Sugarcane expansion 0 n/a 0 n/a n/a 
*Note: all values listed in Total C are carbon stocks for above- and below-ground combined, for all land covers except forest in 
Mato Grosso, for which below is listed separately, to be added to above-ground estimates generated by edge effects model.  
 
 

 

Water models (sediment, nutrient, water availability) 

   Iowa 
LULC 
code LULC_desc 

% 
LULC usle_c 

usle_
p 

load_
n 

eff_
n 

crit_ 
length 

prop_sub_
N Kc 

root_ 
depth 

LULC_v
eg 

0 Water 0% 0.0001 1 0 0.5 10 0 
1.0
5 1 0 

1 
Evergreen 
Needleleaf forest 0% 0.03 1 2.2 0.9 300 0 1 3000 1 

2 
Evergreen 
Broadleaf forest 0% 0.03 1 2.2 0.9 300 0 1 3000 1 

3 
Deciduous 
Needleleaf forest 0% 0.03 1 2.2 0.9 300 0 1 3000 1 

4 
Deciduous 
Broadleaf forest 0% 0.03 1 2.2 0.9 300 0 1 3000 1 

5 Mixed forest 0% 0.03 1 2.2 0.9 300 0 1 3000 1 

6 Closed shrublands 0% 0.04 1 3.5 0.6 300 0 0.8 2150 1 

7 Open shrublands 0% 0.1 1 3.5 0.6 300 0 0.5 2150 1 

8 Woody savannas 0% 0.03 1 1 0.5 150 0 0.9 1070 1 

9 Savannas 0% 0.03 1 1 0.5 150 0 0.9 1070 1 

10 Grasslands 0% 0.03 1 1 0.5 150 0 0.9 1070 1 
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11 
Permanent 
wetlands 0% 0.001 1 1.6 0.5 30 0 1.1 1 0 

12 Croplands 78% 0.24 0.9 7.7 0.5 25 0.08 
0.7
1 500 0 

13 
Urban and built-
up 1% 0.1 0.5 6 0.1 10 0 0.4 1 0 

14 
Cropland/Natural 
vegetation mosaic 19% 0.135 0.95 4.35 0.5 150 0 

0.8
6 1750 1 

16 
Barren or sparsely 
vegetated 0% 0.9 1 6 0.1 10 0 0.7 1075 1 

17  Maize-expansion 0.24 0.9 76 0.5 25 0.08  0.74 1 

 
   Mato Grosso  

lucode LULC_desc %LULC usle_c 
usle
_p 

load_
n eff_n 

crit_ 
length 

prop_sub
_N Kc 

root_ 
depth 

LULC_ 
veg 

0 Water 0% 0.0001 1 0 0.5 10 0 1.05 1 0 

1 
Evergreen 
Needleleaf forest 0% 0.005 1 4.2 0.8 300 0 1 3000 1 

2 
Evergreen Broadleaf 
forest 54% 0.005 1 4.2 0.8 300 0 1 3000 1 

3 
Deciduous 
Needleleaf forest 0% 0.005 1 4.2 0.8 300 0 1 3000 1 

4 
Deciduous 
Broadleaf forest 0% 0.005 1 4.2 0.8 300 0 1 3000 1 

5 Mixed forest 0% 0.005 1 4.2 0.8 300 0 1 3000 1 

6 Closed shrublands 0% 0.04 1 3.5 0.6 300 0 0.8 2150 1 

7 Open shrublands 0% 0.1 1 3.5 0.6 300 0 0.5 2150 1 

8 Woody savannas 1% 0.015 1 1.5 0.75 150 0 0.9 1070 1 

9 Savannas 27% 0.025 1 1.5 0.75 150 0 0.9 1070 1 

10 Grasslands 2% 0.02 1 1.5 0.75 150 0 0.9 1070 1 

11 
Permanent 
wetlands 0% 0.001 1 1.6 0.5 30 0 1.1 1 0 

12 Croplands 9% 0.17 0.8 10 0.5 25 0.01 0.79 500 0 

13 Urban and built-up 0% 0.1 0.5 6 0.1 10 0 0.4 1 0 

14 
Cropland/Natural 
vegetation mosaic 6% 0.0975 0.9 5.75 0.625 150 0 0.9 1750 1 

16 
Barren or sparsely 
vegetated 0% 0.9 1 6 0.1 10 0 0.7 1075 1 

17 Sugarcane-expansion 0.17 0.8 * 0.5 25 0.01 0.9 1 0 
* Specific to each production scenario. For Yield A: (1) 26.72; (2) 28.01; (3) 28.18; (4) 28.12; (5) 27.91.  
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Supplementary Note 4 

 

Effect of intensification practices on ES and their modeling 

Note: the assumptions summarized below synthesize the information in the references and indicates the 
value selected for the InVEST model. 

Iowa 

Intensification 
practice 

Effect on sediment retention 
modeling 

Effect on nutrient retention modeling Effect on water supply modeling 

Conventional 
tillage 

C values decrease 

C decreases by 90%90 

Empirical evidence91 

Assumption: C is reduced by 
90% wrt to conventional 

Increase in leaching  

Very low significance92 
Reduction in retention efficiency 
Empirical evidence92 

Assumption: no change in leaching rate 
Retention efficiency is reduced by 20% 
based on Table S3 and effect of no-till 
in the Meta-model 

- 

Fertilizer 
increase  

- Increase in load 
Information on fertilizer management 
suggest that a decrease by 10% is a 
conservative assumption with precision 

agriculture93 

Assumption: load is reduced by 90% wrt 
the “conventional practice” value. 

- 

Irrigation - Increase in leaching 
Empirical evidence91,92 

Assumption: leaching (proportion of 
subsurface flow) is reduced by ~90% 
based on Table S3 and effect of 
irrigation in the Metamodel 

Decrease in water recharge 
Additional irrigation may help 
increase yields. Amount is 
proportional to the plant water 
deficit (difference between 
precipitation and potential 
evapotranspiration) 

Mato Grosso 

Intensification 
practice 

Effect on sediment retention 
modeling 

Effect on nutrient retention modeling Effect on water supply 
modeling 

Conventional 
tillage 

C values increase 

Measured change of 90%94 
Assumption: C is reduced by 
90% wrt to conventional (NB: 
this is consistent with 
assumption for IA) 

Increase in leaching 

Empirical evidence95 
Assumption: effect lumped with that 
of irrigation 
 

- 

Fertilizer 
increase  

- Increase in load 

Empirical evidence95,96  

Increase in leaching 
Empirical evidence 95,96 
Reduction in retention efficiency 
Assumption: Efficiency increased by 

50% based on measurements97 

Assumption: reduced load by 10% 
based on insights from precision 
agriculture97 

- 

Irrigation - Increase in leaching 
Empirical evidence91,95,96 
Assumption: reduced leaching by 50% 
based on measurements97 
 

Increase in water scarcity 
Water balance approach to 
increase yields. 
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Supplementary Note 5 
 
 
 Parameter table for crop yield-N application model.  
Climate bins included in this table are only those represented in the agricultural regions of Mato Grosso (no 
intensification is expected in Iowa; see Section 3.1.1). The climate-bin intensification approach is based on the 
paper by Mueller et al. (Ref. 47), developed by the Global Landscapes Initiative at University of Minnesota’s 
Institute on the Environment. For full parameter table with all global climate bins for sugarcane and other 
crops, download the datasets supporting the InVEST crop model at: 

 http://data.naturalcapitalproject.org/invest_crop_production 

 

 

Proportion of pixels     

CB 

 

Sc1 Sc2  Sc3 c_N b_N Ymax 
Current N 

per ha 
Yield (A) N 

per ha 
Yield (B) N 

per ha 

20  0.00 0.00 0.00 0.0203 0.9513 95.27 74.4171424 94.4069139 87.5329307 

37  0.00 0.00 0.00 0.0171 0.6654 104.8 50.3458598 65.3290574 60.4317608 

38  0.00 0.00 0.00 0.0162 0.685 104.8 55.0808604 70.9371355 65.7544712 

39  0.23 0.18 0.11 0.0195 0.8867 96.84 71.1536169 90.2085256 83.7344925 

40  0.35 0.25 0.17 0.0165 0.9575 109.37 68.0896091 81.2884075 77.0307323 

46  0.00 0.00 0.00 0.0246 0.8514 87.36 74.1210011 106.960703 94.1124561 

47  0.00 0.00 0.00 0.0175 0.8742 103.18 67.0380093 82.6377456 77.5090256 

48  0.02 0.04 0.06 0.0188 0.8642 102.92 62.3876742 77.1201131 72.2716775 

49  0.06 0.06 0.06 0.024 0.8915 96.84 57.940528 73.3965734 68.1452782 

50  0.05 0.06 0.08 0.0178 0.8819 103.18 66.453598 81.8020787 76.7559639 

56  0.00 0.00 0.00 0.0162 0.7033 102.92 59.4431674 76.4789401 70.8724789 

57  0.00 0.00 0.00 0.0161 0.6591 96.84 67.6308956 90.6809017 82.8495074 

58  0.00 0.00 0.01 0.0325 0.8393 86.98 56.4200878 82.5038065 72.1682821 

59  0.00 0.01 0.02 0.0249 0.8557 96.84 54.1301476 69.0086694 63.9535917 

60  0.03 0.05 0.11 0.0176 0.9015 102.92 68.7505487 84.4199447 79.2631571 

69  0.07 0.05 0.06 0.0246 0.8557 96.84 54.8745527 69.957686 64.8330902 

70  0.19 0.31 0.33 0.0146 0.8953 96.84 95.3547058 120.713024 112.097365 

78  0.00 0.00 0.00 0.025 0.8393 86.98 73.3418302 107.248684 93.813287 

85  0.00 0.00 0.00 0.0077 0.9058 114.17 127.151471 151.584497 143.782807 

88  0.00 0.00 0.00 0.0134 0.7146 86.98 125.249827 188.718649 163.569491 

89  0.00 0.00 0.00 0.0128 0.5365 86.98 108.609372 175.013943 148.701512 

98  0.00 0.00 0.00 0.0104 0.7437 96.84 115.99989 151.587223 139.496188 

99  0.00 0.00 0.00 0.0108 0.6847 96.84 104.465839 138.867588 127.179363 

 

  

http://data.naturalcapitalproject.org/invest_crop_production
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Supplementary Note 6 

 

Comparison of Water Consumption Results Using AWARE Methodology 

The AWARE characterisation factors are given with two spatial resolutions (watershed and country) and two 

temporal resolutions (monthly and annual). We use the watershed values aligned with the spatially-explicit 

predicted prediction of agricultural expansion from our LCM. We use the annual agricultural average because 

we do not know the exact months of irrigation. The annual agricultural average is an average of the monthly 

values based on agricultural water consumption usually happening in this watershed, so it provides a general 

picture of the region (assuming the crop of interest is not being irrigated at completely different times 

compared to other crops). 

The water scarcity footprint is calculated by multiplying the water consumption (inventory) in m3 by the 

AWARE characterisation factor of the specified time and place (in m3-eq / m3)called and is expressed in m3-eq. 

The methodology is based on The WULCA consensus paper submitted by Boulay et al.98  The AWARE 

methodology and data are available at: http://wulca-waterlca.org/project.html. 

Iowa 

There are two watersheds in Iowa in the AWARE dataset. The watershed that covers most of the state and 

intersects with the agricultural expansion in our model has an agricultural annual average of 1.2. Therefore 

the water consumption in all Iowa scenarios (in m3) is multiplied by this factor 1.2 to obtain results in m3-eq. 

Mato Grosso 

There are three watersheds in Mato Grosso in the AWARE dataset. One watershed that accounts for 75% of 

the agricultural expansion has an agricultural annual average of 0.5, while another watershed that accounts 

for the remaining 25% of the agricultural expansion has a value of 1.1. Weighting the average by area produces 

a characterization factor of 0.65.  Therefore the water consumption in all Mato Grosso scenarios (in m3) is 

multiplied by this factor 0.65 to obtain results in m3-eq. 

Water scarcity footprint results (Scenario 3 volumes): 

  Standard LCA LUCI -LCA 

  Maize Sugarcane Maize Sugarcane 

Water Consumption (m3 / T HDPE) 9.5 8.5 5.3 54.8 

AWARE Characterisation Factor 1.2 0.65 1.2 0.65 

Water Scarcity Footprint 11.4 5.5 6.4 3635.6 

While the characterization factor suggests higher impact per unit of water used in Iowa than in Mato Grosso, 

this weighting is not enough to change the overall LUCI-LCA result (i.e., Mato Grosso has a higher water scarcity 

footprint than Iowa, for the case study scenarios). In LUCI-LCA, use of AWARE moderates the results such that 

sugarcane goes from being 10 times worse than maize to being ~ 6 times worse. In standard LCA, however, 

use of AWARE results in the water scarcity impact of maize changing from being roughly on par with sugarcane 

to being nearly twice as impactful.  

 

http://wulca-waterlca.org/project.html
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